929 resultados para STATISTICAL-MECHANICS
Resumo:
A method is developed for demonstrating how solitons with some internal periodic motion may emerge as elementary excitations in the statistical mechanics of field systems. The procedure is demonstrated in the context of complex scalar fields which can, for appropriate choices of the Lagrangian, yield charge-carrying solitons with such internal motion. The derivation uses the techniques of the steepest-descent method for functional integrals. It is shown that, despite the constraint of some fixed total charge, a gaslike excitation of such charged solitons does emerge.
Resumo:
This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.
Resumo:
The method of statistical mechanics is applied to the study of the one-dimensional model of turbulence proposed in an earlier paper. The closure problem is solved by the variational approach which has been developed for the three-dimensional case, yielding two integral equations for two unknown functions. By solving the two integral equations, the Kolmogorov k−5/3 law is derived and the (one-dimensional) Kolmogorov constant Ko is evaluated, obtaining Ko=0.55, which is in good agreement with the result of numerical experiments on one-dimensional turbulence.
Resumo:
The vorticity dynamics of two-dimensional turbulence are investigated analytically, applying the method of Qian (1983). The vorticity equation and its Fourier transform are presented; a set of modal parameters and a modal dynamic equation are derived; and the corresponding Liouville equation for the probability distribution in phase space is solved using a Langevin/Fokker-Planck approach to obtain integral equations for the enstrophy and for the dynamic damping coefficient eta. The equilibrium spectrum for inviscid flow is found to be a stationary solution of the enstrophy equation, and the inertial-range spectrum is determined by introducing a localization factor in the two integral equations and evaluating the localized versions numerically.
Resumo:
We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.
Resumo:
Dynamical systems of the billiard type are of fundamental importance for the description of numerous phenomena observed in many different fields of research, including statistical mechanics, Hamiltonian dynamics, nonlinear physics, and many others. This Focus Issue presents the recent progress in this area with contributions from the mathematical as well as physical stand point. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730155]
Resumo:
Nella tesi sono trattate due famiglie di modelli meccanico statistici su vari grafi: i modelli di spin ferromagnetici (o di Ising) e i modelli di monomero-dimero. Il primo capitolo è dedicato principalmente allo studio del lavoro di Dembo e Montanari, in cui viene risolto il modello di Ising su grafi aleatori. Nel secondo capitolo vengono studiati i modelli di monomero-dimero, a partire dal lavoro di Heilemann e Lieb,con l'intento di dare contributi nuovi alla teoria. I principali temi trattati sono disuguaglianze di correlazione, soluzioni esatte su alcuni grafi ad albero e sul grafo completo, la concentrazione dell'energia libera intorno al proprio valor medio sul grafo aleatorio diluito di Erdös-Rényi.
Resumo:
In this thesis I treat various biophysical questions arising in the context of complexed / ”protein-packed” DNA and DNA in confined geometries (like in viruses or toroidal DNA condensates). Using diverse theoretical methods I consider the statistical mechanics as well as the dynamics of DNA under these conditions. In the first part of the thesis (chapter 2) I derive for the first time the single molecule ”equation of state”, i.e. the force-extension relation of a looped DNA (Eq. 2.94) by using the path integral formalism. Generalizing these results I show that the presence of elastic substructures like loops or deflections caused by anchoring boundary conditions (e.g. at the AFM tip or the mica substrate) gives rise to a significant renormalization of the apparent persistence length as extracted from single molecule experiments (Eqs. 2.39 and 2.98). As I show the experimentally observed apparent persistence length reduction by a factor of 10 or more is naturally explained by this theory. In chapter 3 I theoretically consider the thermal motion of nucleosomes along a DNA template. After an extensive analysis of available experimental data and theoretical modelling of two possible mechanisms I conclude that the ”corkscrew-motion” mechanism most consistently explains this biologically important process. In chapter 4 I demonstrate that DNA-spools (architectures in which DNA circumferentially winds on a cylindrical surface, or onto itself) show a remarkable ”kinetic inertness” that protects them from tension-induced disruption on experimentally and biologically relevant timescales (cf. Fig. 4.1 and Eq. 4.18). I show that the underlying model establishes a connection between the seemingly unrelated and previously unexplained force peaks in single molecule nucleosome and DNA-toroid stretching experiments. Finally in chapter 5 I show that toroidally confined DNA (found in viruses, DNAcondensates or sperm chromatin) undergoes a transition to a twisted, highly entangled state provided that the aspect ratio of the underlying torus crosses a certain critical value (cf. Eq. 5.6 and the phase diagram in Fig. 5.4). The presented mechanism could rationalize several experimental mysteries, ranging from entangled and supercoiled toroids released from virus capsids to the unexpectedly short cholesteric pitch in the (toroidaly wound) sperm chromatin. I propose that the ”topological encapsulation” resulting from our model may have some practical implications for the gene-therapeutic DNA delivery process.
Resumo:
Non-Equilibrium Statistical Mechanics is a broad subject. Grossly speaking, it deals with systems which have not yet relaxed to an equilibrium state, or else with systems which are in a steady non-equilibrium state, or with more general situations. They are characterized by external forcing and internal fluxes, resulting in a net production of entropy which quantifies dissipation and the extent by which, by the Second Law of Thermodynamics, time-reversal invariance is broken. In this thesis we discuss some of the mathematical structures involved with generic discrete-state-space non-equilibrium systems, that we depict with networks in all analogous to electrical networks. We define suitable observables and derive their linear regime relationships, we discuss a duality between external and internal observables that reverses the role of the system and of the environment, we show that network observables serve as constraints for a derivation of the minimum entropy production principle. We dwell on deep combinatorial aspects regarding linear response determinants, which are related to spanning tree polynomials in graph theory, and we give a geometrical interpretation of observables in terms of Wilson loops of a connection and gauge degrees of freedom. We specialize the formalism to continuous-time Markov chains, we give a physical interpretation for observables in terms of locally detailed balanced rates, we prove many variants of the fluctuation theorem, and show that a well-known expression for the entropy production due to Schnakenberg descends from considerations of gauge invariance, where the gauge symmetry is related to the freedom in the choice of a prior probability distribution. As an additional topic of geometrical flavor related to continuous-time Markov chains, we discuss the Fisher-Rao geometry of nonequilibrium decay modes, showing that the Fisher matrix contains information about many aspects of non-equilibrium behavior, including non-equilibrium phase transitions and superposition of modes. We establish a sort of statistical equivalence principle and discuss the behavior of the Fisher matrix under time-reversal. To conclude, we propose that geometry and combinatorics might greatly increase our understanding of nonequilibrium phenomena.
Resumo:
This thesis provides a thoroughly theoretical background in network theory and shows novel applications to real problems and data. In the first chapter a general introduction to network ensembles is given, and the relations with “standard” equilibrium statistical mechanics are described. Moreover, an entropy measure is considered to analyze statistical properties of the integrated PPI-signalling-mRNA expression networks in different cases. In the second chapter multilayer networks are introduced to evaluate and quantify the correlations between real interdependent networks. Multiplex networks describing citation-collaboration interactions and patterns in colorectal cancer are presented. The last chapter is completely dedicated to control theory and its relation with network theory. We characterise how the structural controllability of a network is affected by the fraction of low in-degree and low out-degree nodes. Finally, we present a novel approach to the controllability of multiplex networks