856 resultados para STATISTICAL DATA INTERPRETATION
Resumo:
Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.
Resumo:
A tag-based item recommendation method generates an ordered list of items, likely interesting to a particular user, using the users past tagging behaviour. However, the users tagging behaviour varies in different tagging systems. A potential problem in generating quality recommendation is how to build user profiles, that interprets user behaviour to be effectively used, in recommendation models. Generally, the recommendation methods are made to work with specific types of user profiles, and may not work well with different datasets. In this paper, we investigate several tagging data interpretation and representation schemes that can lead to building an effective user profile. We discuss the various benefits a scheme brings to a recommendation method by highlighting the representative features of user tagging behaviours on a specific dataset. Empirical analysis shows that each interpretation scheme forms a distinct data representation which eventually affects the recommendation result. Results on various datasets show that an interpretation scheme should be selected based on the dominant usage in the tagging data (i.e. either higher amount of tags or higher amount of items present). The usage represents the characteristic of user tagging behaviour in the system. The results also demonstrate how the scheme is able to address the cold-start user problem.
Resumo:
In this paper, we introduce a statistical data-correction framework that aims at improving the DSP system performance in presence of unreliable memories. The proposed signal processing framework implements best-effort error mitigation for signals that are corrupted by defects in unreliable storage arrays using a statistical correction function extracted from the signal statistics, a data-corruption model, and an application-specific cost function. An application example to communication systems demonstrates the efficacy of the proposed approach.
Resumo:
The use of business management techniques in the public sector is not a new topic. However the increased use of the phrase "housing business management" as against that of "housing administration" reflects a change in the underlying philosophy of service delivery. The paper examines how data collection and use can be related to the operational requirements of the social landlords and highlights the problems of systems dynamics generating functionally obsolete data.