931 resultados para STATE FUNCTIONAL CONNECTIVITY
Resumo:
Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.
Resumo:
Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure-function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure-function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we demonstrated that FC emerges as structured linear fluctuations around a stable low firing activity state close to destabilization. Moreover, the model can be further and crucially simplified into a set of motion equations for statistical moments, providing a direct analytical link between anatomical structure, neural network dynamics, and FC. Our study suggests that FC arises from noise propagation and dynamical slowing down of fluctuations in an anatomically constrained dynamical system. Altogether, the reduction from spiking models to statistical moments presented here provides a new framework to explicitly understand the building up of FC through neuronal dynamics underpinned by anatomical connections and to drive hypotheses in task-evoked studies and for clinical applications.
Resumo:
In the cerebral cortex, the activity levels of neuronal populations are continuously fluctuating. When neuronal activity, as measured using functional MRI (fMRI), is temporally coherent across 2 populations, those populations are said to be functionally connected. Functional connectivity has previously been shown to correlate with structural (anatomical) connectivity patterns at an aggregate level. In the present study we investigate, with the aid of computational modeling, whether systems-level properties of functional networks-including their spatial statistics and their persistence across time-can be accounted for by properties of the underlying anatomical network. We measured resting state functional connectivity (using fMRI) and structural connectivity (using diffusion spectrum imaging tractography) in the same individuals at high resolution. Structural connectivity then provided the couplings for a model of macroscopic cortical dynamics. In both model and data, we observed (i) that strong functional connections commonly exist between regions with no direct structural connection, rendering the inference of structural connectivity from functional connectivity impractical; (ii) that indirect connections and interregional distance accounted for some of the variance in functional connectivity that was unexplained by direct structural connectivity; and (iii) that resting-state functional connectivity exhibits variability within and across both scanning sessions and model runs. These empirical and modeling results demonstrate that although resting state functional connectivity is variable and is frequently present between regions without direct structural linkage, its strength, persistence, and spatial statistics are nevertheless constrained by the large-scale anatomical structure of the human cerebral cortex.
Resumo:
Multiple sclerosis (MS), a variable and diffuse disease affecting white and gray matter, is known to cause functional connectivity anomalies in patients. However, related studies published to-date are post hoc; our hypothesis was that such alterations could discriminate between patients and healthy controls in a predictive setting, laying the groundwork for imaging-based prognosis. Using functional magnetic resonance imaging resting state data of 22 minimally disabled MS patients and 14 controls, we developed a predictive model of connectivity alterations in MS: a whole-brain connectivity matrix was built for each subject from the slow oscillations (<0.11Hz) of region-averaged time series, and a pattern recognition technique was used to learn a discriminant function indicating which particular functional connections are most affected by disease. Classification performance using strict cross-validation yielded a sensitivity of 82% (above chance at p<0.005) and specificity of 86% (p<0.01) to distinguish between MS patients and controls. The most discriminative connectivity changes were found in subcortical and temporal regions, and contralateral connections were more discriminative than ipsilateral connections. The pattern of decreased discriminative connections can be summarized post hoc in an index that correlates positively (ρ=0.61) with white matter lesion load, possibly indicating functional reorganisation to cope with increasing lesion load. These results are consistent with a subtle but widespread impact of lesions in white matter and in gray matter structures serving as high-level integrative hubs. These findings suggest that predictive models of resting state fMRI can reveal specific anomalies due to MS with high sensitivity and specificity, potentially leading to new non-invasive markers.
Resumo:
Recent evidence suggests that an area in the dorsal medial prefrontal cortex (dorsal nexus) shows dramatic increases in connectivity across a network of brain regions in depressed patients during the resting state;1 this increase in connectivity is suggested to represent hotwiring of areas involved in disparate cognitive and emotional functions.1, 2, 3 Sheline et al.1 concluded that antidepressant action may involve normalisation of the elevated resting state functional connectivity seen in depressed patients. However, the effects of conventional pharmacotherapy for depression on this resting state functional connectivity is not known and the effects of antidepressant treatment in depressed patients may be confounded by change in symptoms following treatment.
Resumo:
Functional brain imaging studies have shown abnormal neural activity in individuals recovered from anorexia nervosa (AN) during both cognitive and emotional task paradigms. It has been suggested that this abnormal activity which persists into recovery might underpin the neurobiology of the disorder and constitute a neural biomarker for AN. However, no study to date has assessed functional changes in neural networks in the absence of task-induced activity in those recovered from AN. Therefore, the aim of this study was to investigate whole brain resting state functional connectivity in nonmedicated women recovered from anorexia nervosa. Functional magnetic resonance imaging scans were obtained from 16 nonmedicated participants recovered from anorexia nervosa and 15 healthy control participants. Independent component analysis revealed functionally relevant resting state networks. Dual regression analysis revealed increased temporal correlation (coherence) in the default mode network (DMN) which is thought to be involved in self-referential processing. Specifically, compared to healthy control participants the recovered anorexia nervosa participants showed increased temporal coherence between the DMN and the precuneus and the dorsolateral prefrontal cortex/inferior frontal gyrus. The findings support the view that dysfunction in resting state functional connectivity in regions involved in self-referential processing and cognitive control might be a vulnerability marker for the development of anorexia nervosa.
Resumo:
Studies have revealed abnormalities in resting-state functional connectivity in those with major depressive disorder specifically in areas such as the dorsal anterior cingulate, thalamus, amygdala, the pallidostriatum and subgenual cingulate. However, the effect of antidepressant medications on human brain function is less clear and the effect of these drugs on resting-state functional connectivity is unknown. Forty volunteers matched for age and gender with no previous psychiatric history received either citalopram (SSRI; selective serotonergic reuptake inhibitor), reboxetine (SNRI; selective noradrenergic reuptake inhibitor) or placebo for 7 days in a double-blind design. Using resting-state functional magnetic resonance imaging and seed based connectivity analysis we selected the right nucleus accumbens, the right amygdala, the subgenual cingulate and the dorsal medial prefrontal cortex as seed regions. Mood and subjective experience were also measured before and after drug administration using self-report scales. Despite no differences in mood across the three groups, we found reduced connectivity between the amygdala and the ventral medial prefrontal cortex in the citalopram group and the amygdala and the orbitofrontal cortex for the reboxetine group. We also found reduced striatal-orbitofrontal cortex connectivity in the reboxetine group. These data suggest that antidepressant medications can decrease resting-state functional connectivity independent of mood change and in areas known to mediate reward and emotional processing in the brain. We conclude that hypothesis-driven seed based analysis of resting-state fMRI supports the proposition that antidepressant medications might work by normalising the elevated resting-state functional connectivity seen in depressed patients.
Resumo:
BACKGROUND: The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. METHOD: We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. RESULTS: Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. CONCLUSION: Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions.
Resumo:
Capire come modellare l'attività del cervello a riposo, resting state, è il primo passo necessario per avvicinarsi a una reale comprensione della dinamica cerebrale. Sperimentalmente si osserva che, quando il cervello non è soggetto a stimoli esterni, particolari reti di regioni cerebrali presentano un'attività neuronale superiore alla media. Nonostante gli sforzi dei ricercatori, non è ancora chiara la relazione che sussiste tra le connessioni strutturali e le connessioni funzionali del sistema cerebrale a riposo, organizzate nella matrice di connettività funzionale. Recenti studi sperimentali mostrano la natura non stazionaria della connettività funzionale in disaccordo con i modelli in letteratura. Il modello implementato nella presente tesi per simulare l'evoluzione temporale del network permette di riprodurre il comportamento dinamico della connettività funzionale. Per la prima volta in questa tesi, secondo i lavori a noi noti, un modello di resting state è implementato nel cervello di un topo. Poco è noto, infatti, riguardo all'architettura funzionale su larga scala del cervello dei topi, nonostante il largo utilizzo di tale sistema nella modellizzazione dei disturbi neurologici. Le connessioni strutturali utilizzate per definire la topologia della rete neurale sono quelle ottenute dall'Allen Institute for Brain Science. Tale strumento fornisce una straordinaria opportunità per riprodurre simulazioni realistiche, poiché, come affermato nell'articolo che presenta tale lavoro, questo connettoma è il più esauriente disponibile, ad oggi, in ogni specie vertebrata. I parametri liberi del modello sono stati scelti in modo da inizializzare il sistema nel range dinamico ottimale per riprodurre il comportamento dinamico della connettività funzionale. Diverse considerazioni e misure sono state effettuate sul segnale BOLD simulato per meglio comprenderne la natura. L'accordo soddisfacente fra i centri funzionali calcolati nel network cerebrale simulato e quelli ottenuti tramite l'indagine sperimentale di Mechling et al., 2014 comprovano la bontà del modello e dei metodi utilizzati per analizzare il segnale simulato.
Resumo:
Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.
Resumo:
Alteration of brain communication due to abnormal patterns of synchronization is nowadays one of the most suitable mechanisms for having a better understanding of brain pathologies. Very recently, it has been proved that abnormal changes in both local and long range functional interactions underlie the cognitive deficits associated with different brain disorders. Mild cognitive impairment (MCI) is a state characterized for cognitive dysfunction, such as the memory. The study of the spatial and dynamic alterations in MCI subjects' functional networks could provide important evidences of the brain mechanisms responsible for such impairment.
Resumo:
BACKGROUND: Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. METHODS: The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. RESULTS: The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). CONCLUSIONS: This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally induced TFD through PNB.