926 resultados para STARK SPECTROSCOPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of an intracavity Stark spectroscopy experiment on the fundamental state of (CD3OH)-C-13. We use an optically pumped hybrid waveguide FIR laser, CH2F2 as active molecule, and (CD3OH)-C-13 as absorbent molecule. No Brewster window is needed to separate the lasing gas from the absorbing deuterated methanol. An absorption line is assigned as E(l) symmetry (n, K, J): (1,4,18) --> (1,5,18) and its frequency is measured as 63.08631 cm(-1) with a precision of a few parts in 10(7); two more absorptions are reported and a tentative assignment for one of them.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les hétérojonctions formées de deux matériaux, un donneur et un accepteur (D/A), sont la base de la majorité des mélanges photovoltaïques organiques. Les mécanismes de séparation des charges dans ces systèmes représentent aujourd'hui l'un des sujets les plus chauds et les plus débattus dans ce domaine. Nous entrons au coeur de ce débat en choisissant un système D/A à base de phtalocyanine de cuivre (CuPc) et de fullerène (C60). Pour sonder les états excités de nos molécules et obtenir de l'information sur les phénomènes à l'interface D/A, nous réalisons une expérience pompe-sonde, appelée absorption photoinduite (PIA). Nous y mesurons le changement fractionnaire de transmission au travers de l'échantillon. Les mesures de PIA sont réalisées à l'état de quasi équilibre, à T=10K. Nous observons une modulation prononcée dans la région du photoblanchiment de l'état fondamental qui nous indique que la pompe induit un décalage du spectre d'absorption de l'état fondamental. Ce décalage peut être expliqué par deux processus : soit l'échantillon est chauffé par la pompe (effet thermique) ou bien des charges sont créées à l'interface entre les deux matériaux (effet Stark). La dépendance en température du spectre d'absorption entre 10K et 290K montre une signature thermique pour un changement de température de 80K. Grâce au ratio des raies Raman anti-Stokes et Stokes, nous démontrons que la pompe chauffe l'échantillon de 34 K, température insuffisante pour attribuer notre signal à un effet thermique. Nous évaporons ensuite la bicouche CuPc/C60 sur de l'ITO et du saphir, substrats qui possèdent des conductivités thermiques différentes et nous observons le même signal de PIA, excluant par le fait même l'hypothèse de l'effet thermique. Puisque notre étude est comparable à la spectroscopie à effet Stark, nous procédons à une analyse similaire en comparant notre signal de PIA au spectre de la transmittance et à ses dérivés première et seconde. Nous observons alors que notre signal reproduit presque parfaitement la dérivée seconde de la transmittance. Ces résultats sont conformes à une signature optique d'effet Stark due à la création de charges à l'interface D/A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We used a Stark-Optoacoustic cell and hybrid waveguide resonators to perform an Infrared and Far Infrared Stark Spectroscopy study on some transitions of (CD3OH)-C-13. Different behaviours of the transitions in the presence of a d.c. electric field were observed. The Stark splittings of six FIR laser lines ranging from 34 to 136 MHz/kVcm(-1) were determined. The analysis of the behaviour of the IR and FIR transitions in the presence of the external electric fields gives important and exclusive information on the levels involved in the transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The weathering of Fe-bearing minerals under extraterrestrial conditions was investigated by Mössbauer (MB) spectroscopy to gain insights into the role of water on the planet Mars. The NASA Mars Exploration Rovers Spirit and Opportunity each carry a miniaturized Mössbauer spectrometer MIMOS II for the in situ investigation of Martian soils and rocks as part of their payload. The MER flight instruments had to be modified in order to work over the Martian diurnal temperature range (180 K – 290 K) and within the unique electronic environment of the rovers. The modification required special calibration procedures. The integration time necessary to obtain a good quality Mössbauer spectrum with the MIMOS II flight instruments was reduced by 30 % through the design of a new collimator. The in situ investigation of rocks along the rover Spirit's traverse in Gusev crater revealed weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. Correlation plots of primary Fe-bearing minerals identified by MB spectroscopy such as olivine versus secondary Fe-bearing phases such as nanophase Fe oxides showed that olivine is the mineral which is primarily involved in weathering reactions. This argues for a reduced availability of water. Identification of the Fe-oxyhydroxide goethite in the Columbia Hills is unequivocal evidence for aqueous weathering processes in the Columbia Hills. Experiments in which mineral powders were exposed to components of the Martian atmosphere showed that interaction with the atmosphere alone, in the absence of liquid water, is sufficient to oxidize Martian surface materials. The fine-grained dust suspended in the Martian atmosphere may have been altered solely by gas-solid reactions. Fresh and altered specimens of Martian meteorites were investigated with MIMOS II. The study of Martian meteorites in the lab helped to identify in Bounce Rock the first rock on Mars which is similar in composition to basaltic shergottites, a subgroup of the Martian meteorites. The field of astrobiology includes the study of the origin, evolution and distribution of life in the universe. Water is a prerequisite for life. The MER Mössbauer spectrometers identified aqueous minerals such as jarosite and goethite. The identification of jarosite was crucial to evaluate the habitability of Opportunity's landing site at Meridiani Planum during the formation of the sedimentary outcrop rocks, because jarosite puts strong constrains on pH levels. The identification of olivine in rocks and soils on the Gusev crater plains provide evidence for the sparsity of water under current conditions on Mars. Ratios of Fe2+/Fe3+ were obtained with Mössbauer spectroscopy from basaltic glass samples which were exposed at a deep sea hydrothermal vent. The ratios were used as a measure of potential energy for use by a microbial community. Samples from Mars analogue field sites on Earth exhibiting morphological biosignatures were also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the self-assembled functional structure of a broad range of amphiphilic molecular transporters is studied. By employing paramagnetic probe molecules and ions, continuous-wave and pulse electron paramagnetic resonance spectroscopy reveal information about the local structure of these materials from the perspective of incorporated guest molecules. First, the transport function of human serum albumin for fatty acids is in the focus. As suggested by the crystal structure, the anchor points for the fatty acids are distributed asymmetrically in the protein. In contrast to the crystallographic findings, a remarkably symmetric entry point distribution of the fatty acid binding channels is found, which may facilitate the uptake and release of the guest molecules. Further, the metal binding of 1,2,3-triazole modified star-shaped cholic acid oligomers is studied. These biomimetic molecules are able to include and transport molecules in solvents of different polarity. A pre-arrangement of the triazole groups induces a strong chelate-like binding and close contact between guest molecule and metal ion. In absence of a preordering, each triazole moiety acts as a single entity and the binding affinity for metal ions is strongly decreased. Hydrogels based on N-isopropylacrylamide phase separate from water above a certain temperature. The macroscopic thermal collapse of these hydrogels is utilized as a tool for dynamic nuclear polarization. It is shown that a radical-free hyperpolarized solution can be achieved with a spin-labeled gel as separable matrix. On the nanoscale, these hydrogels form static heterogeneities in both structure and function. Collapsed regions protect the spin probes from a chemical decay while open, water-swollen regions act as catalytic centers. Similarly, thermoresponsive dendronized polymers form structural heterogeneities, which are, however, highly dynamic. At the critical temperature, they trigger the aggregation of the polymer into mesoglobules. The dehydration of these aggregates is a molecularly controlled non-equilibrium process that is facilitated by a hydrophobic dendritic core. Further, a slow heating rate results in a kinetically entrapped non-equilibrium state due to the formation of an impermeable dense polymeric layer at the periphery of the mesoglobule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of particles and surfactants at water-oil interfaces has attracted continuous attention because of its emulsion stabilizing effect and the possibility to form two-dimensional materials. Herein, I studied the interfacial diffusion of single molecules and nanoparticles at water-oil interfaces using fluorescence correlation spectroscopy. rnrnFluorescence correlation spectroscopy (FCS) is a promising technique to study diffusion of fluorescent tracers in diverse conditions. This technique monitors and analyzes the fluorescence fluctuation caused by single fluorescent tracers coming in and out of a diffraction-limited observation volume “one at a time”. Thus, this technique allows a combination of high precision, high spatial resolution and low tracer concentration. rnrnIn chapter 1, I discussed some controversial questions regarding the properties of water-hydrophobic interfaces and also introduced the current progress on the stability and dynamic of single nanoparticles at water-oil interfaces. The materials and setups I used in this thesis were summarized in chapter 2. rnrnIn chapter 3, I presented a new strategy to study the properties of water-oil interfaces. The two-dimensional diffusion of isolated molecular tracers at water/n-alkane interfaces was measured using fluorescence correlation spectroscopy. The diffusion coefficients of larger tracers with a hydrodynamic radius of 4.0 nm agreed well with the values calculated from the macroscopic viscosities of the two bulk phases. However, for small molecule tracers with hydrodynamic radii of only 1.0 and 0.6 nm, notable deviations were observed, indicating the existence of an interfacial region with a reduced effective viscosity. rnrnIn chapter 4, the interfacial diffusion of nanoparticles at water-oil interfaces was investigated using FCS. In stark contrast to the interfacial diffusion of molecular tracers, that of nanoparticles at any conditions is slower than the values calculated in accordance to the surrounding viscosity. The diffusion of nanoparticles at water-oil interfaces depended on the interfacial tension of liquid-liquid interfaces, the surface properties of nanoparticles, the particle sizes and the viscosities of surrounding liquid phases. In addition, the interfacial diffusion of nanoparticles with Janus motif is even slower than that of their symmetric counterparts. Based on the experimental results I obtained, I drew some possibilities to describe the origin of nanoparticle slowdown at water-oil interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports on the experimental realization of nanofiber-based spectroscopy of organic molecules. The light guided by subwavelength diameter optical nanfibers exhibits a pronounced evanescent field surrounding the fiber which yields high excitation and emission collection efficiencies for molecules on or near the fiber surface.rnThe optical nanofibers used for the experiments presented in this thesis are realized as thernsub-wavelength diameter waist of a tapered optical fiber (TOF). The efficient transfer of thernlight from the nanofiber waist to the unprocessed part of the TOF depends critically on therngeometric shape of the TOF transitions which represent a nonuniformity of the TOF. Thisrnnonuniformity can cause losses due to coupling of the fundamental guided mode to otherrnmodes which are not guided by the taper over its whole length. In order to quantify the lossrnfrom the fundamental mode due to tapering, I have solved the coupled local mode equationsrnin the approximation of weak guidance for the three layer system consisting of fiber core andrncladding as well as the surrounding vacuum or air, assuming the taper shape of the TOFsrnused for the experiments presented in this thesis. Moreover, I have empirically studied therninfluence of the TOF geometry on its transmission spectra and, based on the results, I haverndesigned a nanofiber-waist TOF with broadband transmission for experiments with organicrnmolecules.rnAs an experimental demonstration of the high sensitivity of nanofiber-based surface spectroscopy, I have performed various absorption and fluorescence spectroscopy measurements on the model system 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA). The measured homogeneous and inhomogeneous broadening of the spectra due to the interaction of the dielectric surface of the nanofiber with the surface-adsorbed molecules agrees well with the values theoretically expected and typical for molecules on surfaces. Furthermore, the self-absorption effects due to reasorption of the emitted fluorescence light by circumjacent surface-adsorbed molecules distributed along the fiber waist have been analyzed and quantified. With time-resolved measurements, the reorganization of PTCDA molecules to crystalline films and excimers can be observed and shown to be strongly catalyzed by the presence of water on the nanofiber surface. Moreover, the formation of charge-transfer complexes due to the interaction with localized surface defects has been studied. The collection efficiency of the molecular emission by the guided fiber mode has been determined by interlaced measurements of absorption and fluorescence spectra to be about 10% in one direction of the fiber.rnThe high emission collection efficiency makes optical nanofibers a well-suited tool for experiments with dye molecules embedded in small organic crystals. As a first experimental realization of this approach, terrylene-doped para-terphenyl crystals attached to the nanofiber-waist of a TOF have been studied at cryogenic temperatures via fluorescence and fluorescence excitation spectroscopy. The statistical fine structure of the fluorescence excitation spectrum for a specific sample has been observed and used to give an estimate of down to 9 molecules with center frequencies within one homogeneous width of the laser wavelength on average for large detunings from resonance. The homogeneous linewidth of the transition could be estimated to be about 190MHz at 4.5K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Stark full widths at half of the maximal line intensity (FWHM, ω) have been measured for 25 spectrallines of PbIII (15 measured for the first time) arising from the 5d106s8s, 5d106s7p, 5d106s5f and 5d106s5g electronic configurations, in a lead plasma produced by ablation with a Nd:YAG laser. The optical emission spectroscopy from a laser-induced plasma generated by a 10 640 Å radiation, with an irradiance of 2 × 1010 W cm− 2 on a lead target (99.99% purity) in an atmosphere of argon was analysed in the wavelength interval between 2000 and 7000 Å. The broadening parameters were obtained with the target placed in argon atmosphere at 6 Torr and 400 ns after each laser light pulse, which provides appropriate measurement conditions. A Boltzmann plot was used to obtain the plasma temperature (21,400 K) and published values of the Starkwidths in Pb I, Pb II and PbIII to obtain the electron number density (7 × 1016 cm− 3); with these values, the plasma composition was determined by means of the Saha equation. Local Thermodynamic Equilibrium (LTE) conditions and plasma homogeneity has been checked. Special attention was dedicated to the possible self-absorption of the different transitions. Comparison of the new results with recent available data is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the absence of lasers approaching trapped ion clock transitions in sharpness we propose to replace the 12.49 m laser field exciting the D3/2-D5/2 transition of the single Ba+ ion A in D3/2 with the near-field of a close by identical ion B in the excited D5/2 state. We tune the frequency of the near-field by the differential Stark shift generated when the center of mass of the tuned ions is slightly moved out of the trap center by a small bias voltage. We demonstrate that the resultant resonant energy exchange can be made considerably faster than the natural lifetime of either metastable level and show how it might be detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the use of nanocrystal quantum dots as a quantum bus element for preparing various quantum resources for use in photonic quantum technologies. Using the Stark-tuning property of nanocrystal quantum dots as well as the biexciton transition, we demonstrate a photonic controlled-NOT (CNOT) interaction between two logical photonic qubits comprising two cavity field modes each. We find the CNOT interaction to be a robust generator of photonic Bell states, even with relatively large biexciton losses. These results are discussed in light of the current state of the art of both microcavity fabrication and recent advances in nanocrystal quantum dot technology. Overall, we find that such a scheme should be feasible in the near future with appropriate refinements to both nanocrystal fabrication technology and microcavity design. Such a gate could serve as an active element in photonic-based quantum technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence Correlation Spectroscopy (FCS) is an optical technique that allows the measurement of the diffusion coefficient of molecules in a diluted sample. From the diffusion coefficient it is possible to calculate the hydrodynamic radius of the molecules. For colloidal quantum dots (QDs) the hydrodynamic radius is valuable information to study interactions with other molecules or other QDs. In this chapter we describe the main aspects of the technique and how to use it to calculate the hydrodynamic radius of quantum dots (QDs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frankfurters are widely consumed all over the world, and the production requires a wide range of meat and non-meat ingredients. Due to these characteristics, frankfurters are products that can be easily adulterated with lower value meats, and the presence of undeclared species. Adulterations are often still difficult to detect, due the fact that the adulterant components are usually very similar to the authentic product. In this work, FT-Raman spectroscopy was employed as a rapid technique for assessing the quality of frankfurters. Based on information provided by the Raman spectra, a multivariate classification model was developed to identify the frankfurter type. The aim was to study three types of frankfurters (chicken, turkey and mixed meat) according to their Raman spectra, based on the fatty vibrational bands. Classification model was built using partial least square discriminant analysis (PLS-DA) and the performance model was evaluated in terms of sensitivity, specificity, accuracy, efficiency and Matthews's correlation coefficient. The PLS-DA models give sensitivity and specificity values on the test set in the ranges of 88%-100%, showing good performance of the classification models. The work shows the Raman spectroscopy with chemometric tools can be used as an analytical tool in quality control of frankfurters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important properties of quantum dots (QDs) is their size. Their size will determine optical properties and in a colloidal medium their range of interaction. The most common techniques used to measure QD size are transmission electron microscopy (TEM) and X-ray diffraction. However, these techniques demand the sample to be dried and under a vacuum. This way any hydrodynamic information is excluded and the preparation process may alter even the size of the QDs. Fluorescence correlation spectroscopy (FCS) is an optical technique with single molecule sensitivity capable of extracting the hydrodynamic radius (HR) of the QDs. The main drawback of FCS is the blinking phenomenon that alters the correlation function implicating in a QD apparent size smaller than it really is. In this work, we developed a method to exclude blinking of the FCS and measured the HR of colloidal QDs. We compared our results with TEM images, and the HR obtained by FCS is higher than the radius measured by TEM. We attribute this difference to the cap layer of the QD that cannot be seen in the TEM images.