913 resultados para STABILIZED GOLD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report a simple approach for controllable synthesis of one-dimensional (ID) gold nanoparticle (AuNP) assemblies in solution. In the presence of divalent metallic ions, poly(acrylic acid)-1-dodecanethiol-stabilized AuNPs (PAA-DDT@AuNPs) are found to form I D assemblies in aqueous solution by an ion-templated chelation process; this causes an easily measurable change in the absorption spectrum of the particles. The assemblies are very stable and remain suspended in solution for more than one month without significant aggregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a new fluorescent detection method for cysteine based on one-step prepared fluorescent conjugated polymer-stabilized gold nanoparticles. The as-prepared fluorescent conjugated polymer-stabilized gold nanoparticles fluoresce weakly due to the fluorescence resonance energy transfer between the fluorophore and the gold nanoparticles. Upon the addition of cysteine, a thiol-containing amino acid, the fluorescence of the colloidal solution increases significantly, indicating that cysteine can modulate the energy transfer between fluorophore and gold. This phenomenon then allows for sensitive detection of cysteine with a limit of detection (LOD) of 25 nM. The linear range of determination of cysteine is from 5 x 10(-8) to 4 x 10(-6) M. None of the other amino acids found in proteins interferes with the determination. Moreover, due to the excellent protecting ability of the fluorescent conjugated polymers, the synthesis of metal nanoparticles and modifying with fluorophores can be accomplished within one step, which makes our method much simpler than conventional methods. We also expect that it will be possible to detect other biologically important analytes based on the fluorescent conjugated polymer-stabilized metal nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability at low temperature, ca. 4 degrees C, were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as prepared nanoparticles revealed the formation of well-dispersed An NPs of ca. 2 nm diameter. Moreover, the color change of the An NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on An NPs. All the characterization results showed that the monodisperse An NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple, green method was developed for the synthesis of gold and silver nanoparticles by using polysaccharides as reducing/stabilizing agents. The obtained positively charged chitosan-stabilized gold nanoparticles and negatively charged heparin-stabilized silver nanoparticles were characterized with UV-vis spectroscopy and transmission electron microscopy. The results illustrated the formation of gold and silver nanoparticles inside the nanoscopic polysaccharide templates. Moreover, the morphology and size distribution of prepared gold and silver nanoparticles varied with the concentration of both the polysaccharides and the precursor metal salts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles were prepared by reducing gold salt with a polysaccharide, chitosan, in the absence/ presence of tripolyphosphate (TPP). Here, chitosan acted as a reducing/stabilizing agent. The obtained gold nanoparticles were characterized with UV-vis spectroscopy and transmission electron microscopy. The results indicated that the shape and size distribution of gold nanoparticles changed with the molecular weight and concentration of chitosan. More interestingly, the gelation of chitosan upon contacting with polyanion (TPP) can also affect the shape and size distribution of gold nanoparticles. By adding TPP to chitosan solution before the reduction of gold salt, gold nanoparticles have a bimodal size distribution, and at the same time, polygonal gold particles were obtained in addition to spherical gold nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold-coated magnetic nanoparticles were synthesized with size ranging from 15 to 40 nm using sodium citrates as the reducing agent. Oxidized magnetites (Fe3O4) fabricated by co-precipitation of Fe2+ and Fe3+ in strong alkaline solution were used as magnetic cores. The structures of gold (Au) shell and magnetic core (Au–Fe) were studied by transmission electron microscopy (TEM) image and energy dispersive spectroscopy (EDS) spectrum. Results from high-resolution X-ray diffraction (HR XRD) show that the Au–Fe oxide nanoparticles have a face-centered cubic shape with the crystalline faces of {1 1 1}. The Au-coated magnetic nanoparticles exhibited a surface plasmon resonance peak at 528 nm. The nanoparticles are well dispersed in distilled water. A 3000 G permanent magnet was successfully used for the separation of the functionalized nanoparticles. Magnetic properties of the nanoparticles were determined by magnetic force microscope (MFM) in nanometric resolution and vibrating sample magnetometer (VSM). Magnetic separation of biological molecules using Au-coated magnetic oxide composite nanoparticles was examined after attachment of protein immunoglobulin G (IgG) through electrostatic interactions. Using this method, separation was achieved with a maximum yield of 35% at an IgG concentration of 400 ng/ml.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma-induced non-equilibrium liquid chemistry is used to synthesize gold nanoparticles (AuNPs) without using any reducing or capping agents. The morphology and optical properties of the synthesized AuNPs are characterized by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Plasma processing parameters affect the particle shape and size and the rate of the AuNP synthesis process. Particles of different shapes (e. g. spherical, triangular, hexagonal, pentagonal, etc) are synthesized in aqueous solutions. In particular, the size of the AuNPs can be tuned from 5 nm to several hundred nanometres by varying the initial gold precursor (HAuCl4) concentration from 2.5 mu M to 1 mM. In order to reveal details of the basic plasma-liquid interactions that lead to AuNP synthesis, we have measured the solution pH, conductivity and hydrogen peroxide (H2O2) concentration of the liquid after plasma processing, and conclude that H2O2 plays the role of the reducing agent which converts Au+3 ions to Au-0 atoms, leading to nucleation growth of the AuNPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asystematic study on the surface-enhanced Raman scattering (SERS) for 3,6-bi-2-pyridyl-1,2,4,5-tetrazine (bptz) adsorbed onto citrate-modified gold nanoparticles (cit-AuNps) was carried out based on electronic and vibrational spectroscopy and density functional methods. The citrate/bptz exchange was carefully controlled by the stepwise addition of bptz to the cit-AuNps, inducing flocculation and leading to the rise of a characteristic plasmon coupling band in the visible region. Such stepwise procedure led to a uniform decrease of the citrate SERS signals and to the rise of characteristic peaks of bptz, consistent with surface binding via the N heterocyclic atoms. In contrast, single addition of a large amount of bptz promoted complete aggregation of the nanoparticles, leading to a strong enhancement of the SERS signals. In this case, from the distinct Raman profiles involved, the formation of a new SERS environment became apparent, conjugating the influence of the local hot spots and charge-transfer (CT) effects. The most strongly enhanced vibrations belong to a(1) and b(2) representations, and were interpreted in terms of the electromagnetic and the CT mechanisms: the latter involving significant contribution of vibronic coupling in the system. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hexaazamacrocycle (L) stabilized gold nanoparticles (AuNPs) were prepared by combining L with HAuCl4 center dot 3H(2)O in a variety of alcohol-water (1 : 1) mixtures. The dual roles of L as a reducing and stabilizing agent were exploited for the synthesis of AuNPs under the optimized ratio of L to Au3+ (2 : 1). Self-assembled gold nanofilms (AuNFs) were constructed at liquid-liquid interfaces by adding equal volumes of hexane to the dispersions of AuNPs in the alcohol-water systems. The nanofilms were formed spontaneously by shaking the two-phase mixture for a minute followed by standing. The alcohols explored for the self-assembly phenomenon were methanol, ethanol, i-propanol and t-butanol. The systems containing methanol or t-butanol resulted in AuNFs at the interfaces, whereas the other two alcohols were found not suitable and the AuNPs remained dispersed in the corresponding alcohol-water medium. The AuNFs prepared under suitable conditions were coated on a variety of surfaces by the dip and lift-off method/solvent removal approach. The AuNFs were characterized by UV-vis, SEM, TEM, AFM and contact angle measurement techniques. A coated glass-vial or cuvette was used as a catalytic reservoir for nitro-reduction reactions under ambient and aqueous conditions using NaBH4 as the reducing agent. The reduced products (amines) were extracted by aqueous work-up using ethyl acetate followed by evaporation of the organic layer; the isolated products required no further purification. The catalyst was recovered by simply decanting the reaction mixture whereupon the isolated catalyst remained coated inside the vessel. The recovered catalyst was found to be equally efficient for further catalytic cycles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel glucose biosensor based on immobilization of glucose oxidase (GOD) in thin films of polyethylenimine-functionalized ionic liquid (PFIL), containing a mixture of carbon nanotubes (CNT) and gold nanoparticles (AuNPs) and deposited on glassy carbon electrodes, was developed. Direct electrochemistry of glucose oxidase in the film was observed, with linear glucose response up to 12 mM. The PFIL-stabilized gold nanoparticles had a diameter of 2.4 +/- 0.8 nm and exhibited favorable stability (stored even over one month with invisible change in UV-vis spectroscopic measurements).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polyelectrolytes have been widely used as building blocks for the creation of thickness-controllable multilayer thin films in a layer-by-layer fashion, and also been used as flocculants or stabilizer of colloids. This paper reports novel finding that a kind of polyelectrolyte, polyamines, can facilely induce HAuCl4 to spontaneously form well-stabilized gold nanoparticles without the additional step of introducing a reducing reagent during the elevation of temperature, even at room temperature in some cases. The polymer chain-confined microenvironment and the acid-induced evolution of amide of such kind of polyelectrolyte solution play an important role in the nucleation and growth of gold nanoparticles. This method would not only be helpful to gain an insight into the formation of gold nanoparticles in polyelectrolyte systems, but also provide a novel and facile one-step polyelectrolyte-based synthetic route to polyelectrolyte protected gold nanoparticles in aqueous media for potential applications. More importantly, this strategy will be general to the preparation of other nanoparticles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We initiate a systematic exploration of a natural polymer, chitosan, as a structural material for designing functional layers on electrode surfaces in this work. Au colloid films are organized on chitosan layer by adsorption. We have successfully constructed a multilayer An nanoparticle assembly through electrostatic interactions on chitosan functionalized quartz substrates by the alternate treatment of the substrate with solution of citrate-stabilized gold nanoparticles (negatively charged) and chitosan solution (positively charged). The resulting substrates were characterized by UV-Vis spectrometry, atomic force microscopy (AFM), and electrochemical impedance spectroscopy (EIS) measurements. These assemblies of colloid An multilayer are highly stable, and can be kept for a long time in distilled water, only being removed by scratching or extreme electrochemical conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ionic liquid stabilized gold(III) chloride is shown to be a very active catalyst in the cyclization of sterically hindered and unhindered acetylenic carboxylic acid substrates even in the absence of a base.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A systematic and comprehensive study of the interaction of citrate-stabilized gold nanoparticles with triruthenium cluster complexes of general formula [Ru(3)(CH(3)COO)(6)(L)](+) [L = 4-cyanopyridine (4-CNpy), 4,4`-bipyridine (4,4`-bpy) or 4,4`-bis(pyridyl)ethylene (bpe)] has been carried out. The cluster-nanoparticle interaction in solution and the construction of thin films of the hybrid materials were investigated in detail by electronic and surface plasmon resonance (SPR) spectroscopy, Raman scattering spectroscopy and scanning electron microscopy (SEM). Citrate-stabilized gold nanoparticles readily interacted with [Ru(3)O(CH(3)COO)(6)(L)(3)](+) complexes to generate functionalized nanoparticles that tend to aggregate according to rates and extents that depend on the bond strength defined by the characteristics of the cluster L ligands following the sequence bpe > 4,4`-bpy >> 4-CNpy. The formation of compact thin films of hybrid AuNP/[Ru(3)O(CH(3)COO)(6)(L)(3)](+) derivatives with L = bpe and 4,4`-bpy indicated that the stability/lability of AuNP-cluster bonds as well as their solubility are important parameters that influence the film contruction process. Fluorine-doped tin oxide electrodes modified with thin films of these nanomaterials exhibited similar electrocatalytic activity but much higher sensitivity than a conventional gold electrode in the oxidation of nitrite ion to nitrate depending on the bridging cluster complex, demonstrating the high potential for the development of amperometric sensors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the last years we assisted to an exponential growth of scientific discoveries for catalysis by gold and many applications have been found for Au-based catalysts. In the literature there are several studies concerning the use of gold-based catalysts for environmental applications and good results are reported for the catalytic combustion of different volatile organic compounds (VOCs). Recently it has also been established that gold-based catalysts are potentially capable of being effectively employed in fuel cells in order to remove CO traces by preferential CO oxidation in H2-rich streams. Bi-metallic catalysts have attracted increasing attention because of their markedly different properties from either of the costituent metals, and above all their enhanced catalytic activity, selectivity and stability. In the literature there are several studies demostrating the beneficial effect due to the addition of an iron component to gold supported catalysts in terms of enhanced activity, selectivity, resistence to deactivation and prolonged lifetime of the catalyst. In this work we tried to develop a methodology for the preparation of iron stabilized gold nanoparticles with controlled size and composition, particularly in terms of obtaining an intimate contact between different phases, since it is well known that the catalytic behaviour of multi-component supported catalysts is strongly influenced by the size of the metal particles and by their reciprocal interaction. Ligand stabilized metal clusters, with nanometric dimensions, are possible precursors for the preparation of catalytically active nanoparticles with controlled dimensions and compositions. Among these, metal carbonyl clusters are quite attractive, since they can be prepared with several different sizes and compositions and, moreover, they are decomposed under very mild conditions. A novel preparation method was developed during this thesis for the preparation of iron and gold/iron supported catalysts using bi-metallic carbonyl clusters as precursors of highly dispersed nanoparticles over TiO2 and CeO2, which are widely considered two of the most suitable supports for gold nanoparticles. Au/FeOx catalysts were prepared by employing the bi-metallic carbonyl cluster salts [NEt4]4[Au4Fe4(CO)16] (Fe/Au=1) and [NEt4][AuFe4(CO)16] (Fe/Au=4), and for comparison FeOx samples were prepared by employing the homometallic [NEt4][HFe3(CO)11] cluster. These clusters were prepared by Prof. Longoni research group (Department of Physical and Inorganic Chemistry- University of Bologna). Particular attention was dedicated to the optimization of a suitable thermal treatment in order to achieve, apart from a good Au and Fe metal dispersion, also the formation of appropriate species with good catalytic properties. A deep IR study was carried out in order to understand the physical interaction between clusters and different supports and detect the occurrence of chemical reactions between them at any stage of the preparation. The characterization by BET, XRD, TEM, H2-TPR, ICP-AES and XPS was performed in order to investigate the catalysts properties, whit particular attention to the interaction between Au and Fe and its influence on the catalytic activity. This novel preparation method resulted in small gold metallic nanoparticles surrounded by highly dispersed iron oxide species, essentially in an amorphous phase, on both TiO2 and CeO2. The results presented in this thesis confirmed that FeOx species can stabilize small Au particles, since keeping costant the gold content but introducing a higher iron amount a higher metal dispersion was achieved. Partial encapsulation of gold atoms by iron species was observed since the Au/Fe surface ratio was found much lower than bulk ratio and a strong interaction between gold and oxide species, both of iron oxide and supports, was achieved. The prepared catalysts were tested in the total oxidation of VOCs, using toluene and methanol as probe molecules for aromatics and alchols, respectively, and in the PROX reaction. Different performances were observed on titania and ceria catalysts, on both toluene and methanol combustion. Toluene combustion on titania catalyst was found to be enhanced increasing iron loading while a moderate effect on FeOx-Ti activity was achieved by Au addition. In this case toluene combustion was improved due to a higher oxygen mobility depending on enhanced oxygen activation by FeOx and Au/FeOx dispersed on titania. On the contrary ceria activity was strongly decreased in the presence of FeOx, while the introduction of gold was found to moderate the detrimental effect of iron species. In fact, excellent ceria performances are due to its ability to adsorb toluene and O2. Since toluene activation is the determining factor for its oxidation, the partial coverage of ceria sites, responsible of toluene adsorption, by FeOx species finely dispersed on the surface resulted in worse efficiency in toluene combustion. Better results were obtained for both ceria and titania catalysts on methanol total oxidation. In this case, the performances achieved on differently supported catalysts indicate that the oxygen mobility is the determining factor in this reaction. The introduction of gold on both TiO2 and CeO2 catalysts, lead to a higher oxygen mobility due to the weakening of both Fe-O and Ce-O bonds and consequently to enhanced methanol combustion. The catalytic activity was found to strongly depend on oxygen mobility and followed the same trend observed for catalysts reducibility. Regarding CO PROX reaction, it was observed that Au/FeOx titania catalysts are less active than ceria ones, due to the lower reducibility of titania compared to ceria. In fact the availability of lattice oxygen involved in PROX reaction is much higher in the latter catalysts. However, the CO PROX performances observed for ceria catalysts are not really high compared to data reported in literature, probably due to the very low Au/Fe surface ratio achieved with this preparation method. CO preferential oxidation was found to strongly depend on Au particle size but also on surface oxygen reducibility, depending on the different oxide species which can be formed using different thermal treatment conditions or varying the iron loading over the support.