952 resultados para SST gradient
Resumo:
The tropospheric response to midlatitude SST anomalies has been investigated through a series of aquaplanet simulations using a high-resolution version of the Hadley Centre atmosphere model (HadAM3) under perpetual equinox conditions. Model integrations show that increases in the midlatitude SST gradient generally lead to stronger storm tracks that are shifted slightly poleward, consistent with changes in the lower-tropospheric baroclinicity. The large-scale atmospheric response is, however, highly sensitive to the position of the SST gradient anomaly relative to that of the subtropical jet in the unperturbed atmosphere. In particular, when SST gradients are increased very close to the subtropical jet, then the Hadley cell and subtropical jet is strengthened while the storm track and eddy-driven jet are shifted equatorward. Conversely, if the subtropical SST gradients are reduced and the midlatitude gradients increased, then the storm track shows a strong poleward shift and a well-separated eddy-driven jet is produced. The sign of the SST anomaly is shown to play a secondary role in determining the overall tropospheric response. These findings are used to provide a new and consistent interpretation of some previous GCM studies concerning the atmospheric response to midlatitude SST anomalies.
Resumo:
This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea-ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.
Resumo:
Abundant hydroclimatic evidence from western Amazonia and the adjacent Andes documents wet conditions during Heinrich Stadial 1 (HS1, 18-15 ka), a cold period in the high latitudes of the North Atlantic. This precipitation anomaly was attributed to a strengthening of the South American summer monsoon due to a change in the Atlantic interhemispheric sea surface temperature (SST) gradient. However, the physical viability of this mechanism has never been rigorously tested. We address this issue by combining a thorough compilation of tropical South American paleorecords and a set of atmosphere model sensitivity experiments. Our results show that the Atlantic SST variations alone, although leading to dry conditions in northern South America and wet conditions in northeastern Brazil, cannot produce increased precipitation over western Amazonia and the adjacent Andes during HS1. Instead, an eastern equatorial Pacific SST increase (i.e., 0.5-1.5 °C), in response to the slowdown of the Atlantic Meridional Overturning Circulation during HS1, is crucial to generate the wet conditions in these regions. The mechanism works via anomalous low sea level pressure over the eastern equatorial Pacific, which promotes a regional easterly low-level wind anomaly and moisture recycling from central Amazonia towards the Andes.
Resumo:
En aquest projecte s’ha estudiat la relació entre els canvis en les temperatures superficials de l’Oceà Atlàntic i els canvis en la circulació atmosfèrica en el segle XX. Concretament s’han analitzat dos períodes de estudi: el primer des del 1940 al 1960 i el segon des del 1980 fins al 2000. S’ha posat especial interès en les anomalies en les temperatures superficials del mar en la regió tropical de l’Oceà Atlàntic i la possible interconnexió amb els canvis climàtics observats i predits. Per a la realització de l’estudi s’han dut a terme una sèrie d’experiments utilitzant el model climàtic elaborat a la universitat d’UCLA (UCLA‐AGCM model). Els resultats obtinguts han estat analitzats en forma de mapes i figures per a cada variable d’estudi. També s’ha fet una comparació entre els resultats obtinguts i altres trobats en altres treballs publicats sobre el mateix tema de recerca. Els resultats obtinguts són molt amplis i poden tenir diverses interpretacions. Tot i així algunes de les conclusions a les quals s’ha arribat són: les diferències més significatives per a les variables estudiades i trobades a partir dels resultats obtinguts del model per als dos períodes d’estudi són en els mesos d’hivern i a la zona dels tròpics; concretament a parts del nord de sud Amèrica i a parts del nord d’Àfrica. S’han trobat també canvis significatius en els patrons de precipitació sobre aquestes mateixes zones. També s’ha observant un moviment cap al nord de la zona d’interconvergència tropical i pot ser degut a l’anòmal gradient trobat a la zona equatorial en les temperatures superficial de l’Oceà. Tot i així per a una definitiva discussió i conclusions sobre els resultats dels experiments, seria necessari un estudi més ampli i profund.
Resumo:
The late Early Triassic sedimentary-facies evolution and carbonate carbon-isotope marine record (delta(13)C(carb)) of ammonoid-rich, outer platform settings show striking similarities between the South ChinaBlock (SCB) and the widely distant Northern Indian Margin (NIM). The studied sections are located within the Triassic Tethys Himalayan belt (Losar section, Himachal Pradesh, India) and the Nanpanjiang Basin in the South China Block (Jinya section, Guangxi Province), respectively. Carbon isotopes from the studied sections confirm the previously observed carbon cycle perturbations at a time of major paleoceanographic changes in the wake of the end-Permian biotic crisis. This study documents the coincidence between a sharp increase in the carbon isotope composition and the worldwide ammonoid evolutionary turnover (extinction followed by a radiation) occurring around the Smithian-Spathian boundary. Based on recent modeling studies on ammonoid paleobiogeography and taxonomic diversity, we demonstrate that the late Early Triassic (Smithian and Spathian) was a time of a major climate change. More precisely, the end Smithian climate can be characterized by a warm and equable climate underlined by a flat, pole-to-equator, sea surface temperature (SST) gradient, while the steep Spathian SST gradient suggests latitudinally differentiated climatic conditions. Moreover, sedimentary evidence suggests a transition from a humid and hot climate during the Smithian to a dryer climate from the Spathian onwards. By analogy with comparable carbon isotope perturbations in the Late Devonian, Jurassic and Cretaceous we propose that high atmospheric CO(2) levels could have been responsible for the observed carbon cycle disturbance at the Smithian-Spathian boundary. We suggest that the end Smithian ammonoid extinction has been essentially caused by a warm and equable climate related to an increased CO(2) flux possibly originating from a short eruptive event of the Siberian igneous province. This increase in atmospheric CO(2) concentrations could have additionally reduced the marine calcium carbonate oversaturation and weakened the calcification potential of marine organisms, including ammonoids, in late Smithian oceans. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
According to current knowledge, convection over the tropical oceans increases with sea surface temperature (SST) from 26 to 29 °C, and at SSTs above 29 °C, it sharply decreases. Our research shows that it is only over the summer warm pool areas of Indian and west Pacific Oceans (monsoon areas) where the zone of maximum SST is away from the equator that this kind of SST-convection relationship exists. In these areas (1) convection is related to the SST gradient that generates low-level moisture convergence and upward vertical motion in the atmosphere. This has modelling support. Regions of SST maxima have low SST gradients and therefore feeble convection. (2) Convection initiated by SST gradient produces strong wind fields particularly cross-equatorial low-level jetstreams (LLJs) on the equator-ward side of the warm pool and both the convection and LLJ grow through a positive feedback process. Thus, large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. In the inter-tropical convergence zone (ITCZ) over the east Pacific Ocean and the south Pacific convergence zone (SPCZ) over the west Pacific Ocean, low-level winds from north and south hemisphere converge in the zone of maximum SST, which lies close to the equator producing there elongated bands of deep convection, where we find that convection increases with SST for the full range of SSTs unlike in the warm pool regions. The low-level wind divergence computed using QuikSCAT winds has large and significant linear correlation with convection in both the warm pool and ITCZ/SPCZ areas. But the linear correlation between SST and convection is large only for the ITCZ/SPCZ. These findings have important implications for the modelling of largescale atmospheric circulations and the associated convective rainfall over the tropical oceans
Resumo:
A distinct cold tongue has recently been noticed in the South China Sea during the winter monsoon, with the cold tongue temperature minimum occurring in the January or February. This cold tongue shows signi¯cant links with the Maritime Continent's rainfall during the winter period. The cold tongue and its interaction with the Maritime Continent's weather were studied using Reynolds SST data, wind ¯elds from the NCEP{NCAR reanalysis dataset and the quikSCAT dataset. In addition, rainfall from the GOES Precipitation Index (GPI) for the periods 2000 to 2008 was also used. The propagation of the cold tongue towards the south is explained using wind dynamics and the western boundary current. During the period of strong cold tongue, the surface wind is strong and the western boundary current advects the cold tongue to the south. During the period of strong winds the zonal gradient of SST is high [0.5±C (25 km)¡1]. The cold tongue plays an important role in regulating the climate over the Maritime Continent. It creates a zonal/meridional SST gradient and this gradient ultimately leads in the formation of convection. Hence, two maximum precipitation zones are found in the Maritime Continent, with a zone of relatively lower precipitation between, which coincides with the cold tongue's regions. It was found that the precipitation zones have strong links with the intensity of the cold tongue. During stronger cold tongue periods the precipitation on either side of the cold tongue is considerably greater than during weaker cold tongue periods. The features of convection on the eastern and western sides of the cold tongue behave di®erently. On the eastern side convection is preceded by one day with SST gradient, while on the western side it is four days.
Resumo:
Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by observed boundary conditions, produces results that agree well with analyses from the 40-yr ECMWF Re-Analysis (ERA-40), including the distribution of storms as a function of maximum intensity. This provides the authors with confidence in the use of the model for the climate change experiments. The statistical distribution of storm intensities is virtually preserved under climate change using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario until the end of this century. There are no indications in this study of more intense storms in the future climate, either in the Tropics or extratropics, but rather a minor reduction in the number of weaker storms. However, significant changes occur on a regional basis in the location and intensity of storm tracks. There is a clear poleward shift in the Southern Hemisphere with consequences of reduced precipitation for several areas, including southern Australia. Changes in the Northern Hemisphere are less distinct, but there are also indications of a poleward shift, a weakening of the Mediterranean storm track, and a strengthening of the storm track north of the British Isles. The tropical storm tracks undergo considerable changes including a weakening in the Atlantic sector and a strengthening and equatorward shift in the eastern Pacific. It is suggested that some of the changes, in particular the tropical ones, are due to an SST warming maximum in the eastern Pacific. The shift in the extratropical storm tracks is shown to be associated with changes in the zonal SST gradient in particular for the Southern Hemisphere.
Resumo:
A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15–20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10–20% along the Gulf Stream SST gradient.
Resumo:
During the twentieth century sea surface temperatures in the Atlantic Ocean exhibited prominent multidecadal variations. The source of such variations has yet to be rigorously established—but the question of their impact on climate can be investigated. Here we report on a set of multimodel experiments to examine the impact of patterns of warming in the North Atlantic, and cooling in the South Atlantic, derived from observations, that is characteristic of the positive phase of the Atlantic Multidecadal Oscillation (AMO). The experiments were carried out with six atmospheric General Circulation Models (including two versions of one model), and a major goal was to assess the extent to which key climate impacts are consistent between the different models. The major climate impacts are found over North and South America, with the strongest impacts over land found over the United States and northern parts of South America. These responses appear to be driven by a combination of an off-equatorial Gill response to diabatic heating over the Caribbean due to increased rainfall within the region and a Northward shift in the Inter Tropical Convergence Zone (ITCZ) due to the anomalous cross-equatorial SST gradient. The majority of the models show warmer US land temperatures and reduced Mean Sea Level Pressure during summer (JJA) in response to a warmer North Atlantic and a cooler South Atlantic, in line with observations. However the majority of models show no significant impact on US rainfall during summer. Over northern South America, all models show reduced rainfall in southern hemisphere winter (JJA), whilst in Summer (DJF) there is a generally an increase in rainfall. However, there is a large spread amongst the models in the magnitude of the rainfall anomalies over land. Away from the Americas, there are no consistent significant modelled responses. In particular there are no significant changes in the North Atlantic Oscillation (NAO) over the North Atlantic and Europe in Winter (DJF). Additionally, the observed Sahel drying signal in African rainfall is not seen in the modelled responses. Suggesting that, in contrast to some studies, the Atlantic Multidecadal Oscillation was not the primary driver of recent reductions in Sahel rainfall.
Resumo:
We analyze how the characteristics of El Niño-Southern Oscillation (ENSO) are changed in coupled ocean–atmosphere simulations of the mid-Holocene (MH) and the Last Glacial Maximum (LGM) performed as part of the Paleoclimate Modeling Intercomparison Project phase 2 (PMIP2). Comparison of the model results with present day observations show that most of the models reproduce the large scale features of the tropical Pacific like the SST gradient, the mean SST and the mean seasonal cycles. All models simulate the ENSO variability, although with different skill. Our analyses show that several relationships between El Niño amplitude and the mean state across the different control simulations are still valid for simulations of the MH and the LGM. Results for the MH show a consistent El Niño amplitude decrease. It can be related to the large scale atmospheric circulation changes. While the Northern Hemisphere receives more insolation during the summer time, the Asian summer monsoon system is strengthened which leads to the enhancement of the Walker circulation. Easterlies prevailing over the central eastern Pacific induce an equatorial upwelling that damps the El Niño development. Results are less conclusive for 21ka. Large scale dynamic competes with changes in local heat fluxes, so that model shows a wide range of responses, as it is the case in future climate projections.
Resumo:
The impact of North Atlantic SST patterns on the storm track is investigated using a hierarchy of GCM simulations using idealized (aquaplanet) and “semirealistic” boundary conditions in the atmospheric component (HadAM3) of the third climate configuration of the Met Office Unified Model (HadCM3). This framework enables the mechanisms determining the tropospheric response to North Atlantic SST patterns to be examined, both in isolation and in combination with continental-scale landmasses and orography. In isolation, a “Gulf Stream” SST pattern acts to strengthen the downstream storm track while a “North Atlantic Drift” SST pattern weakens it. These changes are consistent with changes in the extratropical SST gradient and near-surface baroclinicity, and each storm-track response is associated with a consistent change in the tropospheric jet structure. Locally enhanced near-surface horizontal wind convergence is found over the warm side of strengthened SST gradients associated with ascending air and increased precipitation, consistent with previous studies. When the combined SST pattern is introduced into the semirealistic framework (including the “North American” continent and the “Rocky Mountains”), the results suggest that the topographically generated southwest–northeast tilt in the North Atlantic storm track is enhanced. In particular, the Gulf Stream shifts the storm track south in the western Atlantic whereas the strong high-latitude SST gradient in the northeastern Atlantic enhances the storm track there.
Resumo:
Widely distributed proxy records indicate that the Medieval Climate Anomaly (MCA; *900–1350 AD) was characterized by coherent shifts in large-scale Northern Hemisphere atmospheric circulation patterns. Although cooler sea surface temperatures in the central and eastern equatorial Pacific can explain some aspects of medieval circulation changes, they are not sufficient to account for other notable features, including widespread aridity through the Eurasian sub-tropics, stronger winter westerlies across the North Atlantic and Western Europe, and shifts in monsoon rainfall patterns across Africa and South Asia. We present results from a full-physics coupled climate model showing that a slight warming of the tropical Indian and western Pacific Oceans relative to the other tropical ocean basins can induce a broad range of the medieval circulation and climate changes indicated by proxy data, including many of those not explained by a cooler tropical Pacific alone. Important aspects of the results resemble those from previous simulations examining the climatic response to the rapid Indian Ocean warming during the late twentieth century, and to results from climate warming simulations—especially in indicating an expansion of the Northern Hemisphere Hadley circulation. Notably, the pattern of tropical Indo-Pacific sea surface temperature (SST) change responsible for producing the proxy-model similarity in our results agrees well with MCA-LIA SST differences obtained in a recent proxy-based climate field reconstruction. Though much remains unclear, our results indicate that the MCA was characterized by an enhanced zonal Indo-Pacific SST gradient with resulting changes in Northern Hemisphere tropical and extra-tropical circulation patterns and hydroclimate regimes, linkages that may explain the coherent regional climate shifts indicated by proxy records from across the planet. The findings provide new perspectives on the nature and possible causes of the MCA—a remarkable, yet incompletely understood episode of Late Holocene climatic change.
Resumo:
The Walker circulation is one of the major components of the large-scale tropical atmospheric circulation and variations in its strength are critical to equatorial Pacific Ocean circulation. It has been argued in the literature that during the 20th century the Walker circulation weakened, and that this weakening was attributable to anthropogenic climate change. By using updated observations, we show that there has been a rapid interdecadal enhancement of the Walker circulation since the late 1990s. Associated with this enhancement is enhanced precipitation in the tropical western Pacific, anomalous westerlies in the upper troposphere, descent in the central and eastern tropical Pacific, and anomalous surface easterlies in the western and central tropical Pacific. The characteristics of associated oceanic changes are a strengthened thermocline slope and an enhanced zonal SST gradient across the tropical Pacific. Many characteristics of these changes are similar to those associated with the mid-1970s climate shift with an opposite sign. We also show that the interdecadal variability of the Walker circulation in the tropical Pacific is inversely correlated to the interdecadal variability of the zonal circulation in the tropical Atlantic. An enhancement of the Walker circulation in the tropical Pacific is associated with a weakening zonal circulation in the tropical Atlantic and vise versa, implying an inter-Atlantic-Pacific connection of the zonal overturning circulation variation. Whether these recent changes will be sustained is not yet clear, but our research highlights the importance of understanding the interdecadal variability, as well as the long-term trends, that influence tropical circulation.
Resumo:
The National Center for Atmospheric Research-Community Climate System Model (NCAR-CCSM) is used in a coupled atmosphere–ocean–sea-ice simulation of the Last Glacial Maximum (LGM, around 21,000 years ago) climate. In the tropics, the simulation shows a moderate cooling of 3 °C over land and 2 °C in the ocean in zonal average. This cooling is about 1 °C cooler than the CLIMAP sea surface temperatures (SSTs) but consistent with recent estimates of both land and sea surface temperature changes. Subtropical waters are cooled by 2–2.5 °C, also in agreement with recent estimates. The simulated oceanic thermohaline circulation at the LGM is not only shallower but also weaker than the modern with a migration of deep-water formation site in the North Atlantic as suggested by the paleoceanographic evidences. The simulated northward flow of Antarctic Bottom Water (AABW) is enhanced. These deep circulation changes are attributable to the increased surface density flux in the Southern Ocean caused by sea-ice expansion at the LGM. Both the Gulf Stream and the Kuroshio are intensified due to the overall increase of wind stress over the subtropical oceans. The intensified zonal wind stress and southward shift of its maximum in the Southern Ocean effectively enhances the transport of the Antarctic Circumpolar Current (ACC) by more than 50%. Simulated SSTs are lowered by up to 8 °C in the midlatitudes. Simulated conditions in the North Atlantic are warmer and with less sea-ice than indicated by CLIMAP again, in agreement with more recent estimates. The increased meridional SST gradient at the LGM results in an enhanced Hadley Circulation and increased midlatitude storm track precipitation. The increased baroclinic storm activity also intensifies the meridional atmospheric heat transport. A sensitivity experiment shows that about half of the simulated tropical cooling at the LGM originates from reduced atmospheric concentrations of greenhouse gases.