1000 resultados para SSA CALORIMETRIC TECHNIQUE
Resumo:
In this article, the polydispersity of the ethylene sequence length (ESL) in ethylene/alpha-olefin copolymers was studied by atomic force microscopy (AFM) and the thermal-fractionation technique. The crystal morphology observation by AFM showed that morphology changed gradually with decreasing average ESL from complete lamellae over shorter and more curved lamellae to a granular-like morphology, and the mixed morphology was observed after stepwise crystallization from phase-separated melt. This result indicated that the ethylene sequence with different lengths crystallized into a crystalline phase with a different size and stability at the copolymer systems. The thermal-fractionation technique was used to characterize the polydispersity of ESL. Three of the following statistical terms were introduced to describe the distribution of ESL and the lamellar thickness: the arithmetic mean (L) over bar (n), the weight mean (L) over bar (w), and the broadness index I = (L) over bar (w)/(L) over bar (n). It was concluded that the polydispersity of ESL could be quantitatively characterized by the thermal-fractionation technique. The effects of temperature range, temperature-dependent specific heat capacity C-p of copolymer, and the molecular weight on the results of thermal fractionation were discussed,
Resumo:
The problems in measuring thermal emittance by steady?state calorimetric technique have been analyzed. A few suggestions to make it more accurate, simple, and rapid have been discussed and results are presented.
Resumo:
Context sensitive pointer analyses based on Whaley and Lam’s bddbddb system have been shown to scale to large Java programs. We provide a technique to incorporate flow sensitivity for Java fields into one such analysis and obtain an escape analysis based on it. First, we express an intraprocedural field flow sensitive analysis, using Fink et al.’s Heap Array SSA form in Datalog. We then extend this analysis interprocedurally by introducing two new φ functions for Heap Array SSA Form and adding deduction rules corresponding to them. Adding a few more rules gives us an escape analysis. We describe two types of field flow sensitivity: partial (PFFS) and full (FFFS), the former without strong updates to fields and the latter with strong updates. We compare these analyses with two different (field flow insensitive) versions of Whaley-Lam analysis: one of which is flow sensitive for locals (FS) and the other, flow insensitive for locals (FIS). We have implemented this analysis on the bddbddb system while using the SOOT open source framework as a front end. We have run our analysis on a set of 15 Java programs. Our experimental results show that the time taken by our field flow sensitive analyses is comparable to that of the field flow insensitive versions while doing much better in some cases. Our PFFS analysis achieves average reductions of about 23% and 30% in the size of the points-to sets at load and store statements respectively and discovers 71% more “caller-captured” objects than FIS.
Resumo:
The activity of NiO in NiO-MgO rock salt solid solution has been measured at 1300 K by employing a solid-state galvanic cell: Pt,Ni+ NiO||(CaO)ZrO2||Ni + (Nix,Mgl-x)O, Pt. A high-density tube of Zr02-15 mol% CaO has been used as the solid electrolyte for the emf measurements. The activities of the component oxides in the rock salt solid solution exhibit negative deviation from ideality at the temperature of investigation. The solid solution obeys regular solution behavior at 1300 K. The value of the regular solution parameter is found to be -12000 ((l000) J mol-1. The composition dependence of ΔGEx obtained in this study agrees reasonably well with the calorimetric data reported in the literature for NiO-MgO solid solution.
Resumo:
Glasses of the composition 2TeO(2)-V2O5 were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were confirmed by X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC), respectively. The glass transition and crystallization parameters were evaluated under non-isothermal conditions using DSC. X-ray diffraction studies confirmed the presence of partially oriented crystallites in the heat-treated glasses. Kauzmann temperature (lower bound for the kinetically observed glass transition) was deduced from the heating rate dependent glass transition and crystallization temperatures.
Resumo:
The molar heat capacities of the two biphenyl liquid crystals, 3BmFF and 3BmFFXF3, with a purity of 99.7 mol% have been precisely measured by a fully automated precision adiabatic calorimeter in the temperature range between T = 80 and 350 K. Nematic phase-liquid phase transitions were found between T = 297 K and 300 K with a peak temperature of T-peak = (298.071 +/- 0.089) K for 3BmFF, and between T = 316 and 319 K with a peak temperature of T-peak = (315.543 +/- 0.043) K for 3BmFFXF3. The molar enthalpy (Delta(trs)H(m)) and entropy (Delta(trs)S(m)) corresponding to these phase transitions have been determined by means of the analysis of the heat capacity curves, which are (15.261 +/- 0.023) U mol(-1) and (51.202 +/- 0.076) J K-1 mol(-1) for 3BmFF, (31.624 +/- 0.066) kJ mol(-1) and (100.249 +/- 0.212) J K-1 mol(-1) for 3BmFFXF3, respectively. The real melting points (TI) and the ideal melting points (TO) with no impurities of the two compounds have been obtained from the fractional melting method to be (298.056 +/- 0.018) K and (298.165 +/- 0.038) K for 3BmFF, (315.585 +/- 0.043) K and (315.661 +/- 0.044) K for 3BmFFXF3, respectively. In addition, the transitions of these two biphenyl liquid crystals from nematic phase to liquid phase have further been investigated by differential scanning calorimeter (DSC) technique; the repeatability and reliability for these phase transitions were verified. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The thermal transport properties—thermal diffusivity, thermal conductivity and specific heat capacity—of potassium selenate crystal have been measured through the successive phase transitions, following the photo-pyroelectric thermal wave technique. The variation of thermal conductivity with temperature through the incommensurate (IC) phase of this crystal is measured. The enhancement in thermal conductivity in the IC phase is explained in terms of heat conduction by phase modes, and the maxima in thermal conductivity during transitions is due to enhancement in the phonon mean free path and the corresponding reduction in phonon scattering. The anisotropy in thermal conductivity and its variation with temperature are reported. The variation of the specific heat with temperature through the high temperature structural transition at 745 K is measured, following the differential scanning calorimetric method. By combining the results of photo-pyroelectric thermal wave methods and differential scanning calorimetry, the variation of the specific heat capacity with temperature through all the four phases of K2SeO4 is reported. The results are discussed in terms of phonon mode softening during transitions and phonon scattering by phase modes in the IC phase.