10 resultados para SPWM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adopting square wave excitation to drive induction motors (IMs) can substantially reduce inverter switching losses. However, the low-order time harmonics inherent in the output voltage generates parasitic torques that degrade motor performance and reduce efficiency. In this paper, a novel harmonic elimination modulation technique with full voltage control is studied as an interesting and alternative means of operating small (<1kW) IM drives efficiently. A fully verified harmonic elimination scheme, which removes the 5th, 7th, 11th, 13th and 17 th time harmonics, was implemented and applied to an IGBT driven IM. The power losses incurred in the inverter and the IM as a result of the switching scheme have been determined. © 2008 Crown copyright.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multilevel converters are used in high power and high voltage applications due to their attractive benefits in generating high quality output voltage. Increasing the number of voltage levels can lead to a reduction in lower order harmonics. Various modulation and control techniques are introduced for multilevel converters like Space Vector Modulation (SVM), Sinusoidal Pulse Width Modulation (SPWM) and Harmonic Elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this paper a new modulation technique based on harmonic elimination method is proposed for those multilevel converters that have unequal DC link voltages. This new technique has better effect on output voltage quality and less Total Harmonic Distortion (THD) than other modulation techniques. In order to verify the proposed modulation technique, MATLAB simulations are carried out for a single-phase diode-clamped inverter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Three-Phase Nine-Switch Converter (NSC) topology for Doubly Fed Induction Generator in wind energy generation is proposed in this paper. This converter topology was used in various applications such as Hybrid Electric Vehicles and Uninterruptable Power Supplies. In this paper, Nine-Switch Converter is introduced in Doubly Fed Induction Generator in renewable energy application for the first time. It replaces the conventional Back-to-Back Pulse Width Modulated voltage source converter (VSC) which composed of twelve switches in many DFIG applications. Reduction in number of switches is the most beneficial in terms of cost and power switching losses. The operation principle of Nine-Switch Converter using SPWM method is discussed. The resulting NSC performance of rotor side current control, active power and reactive control are compared with Back-to Back voltage source converter performance. DC link voltage regulation using front end converter is also presented. Finally the simulation results of DFIG performances using NSC and Back-to-Back VSC are analyzed and compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active Front-End (AFE) converter operation produces electrically noisy DC bus on common mode basis. This results in higher ground current as compared to three phase diode bridge rectifier. Filter topologies for DC bus have to deal problems with switching frequency and harmonic currents. The proposed filter approach reduces common mode voltage and circulates third harmonic current within the system, resulting in minimal ground current injection. The filtering technique, its constrains and design to attenuate common mode voltage and eliminate lower order harmonics injection to ground is discussed. The experimental results for operation of the converter with both SPWM and CSVPWM are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A topology for voltage-space phasor generation equivalent to a five-level inverter for an open-end winding induction motor is presented. The open-end winding induction motor is fed from both ends by two three-level inverters. The three-level inverters are realised by cascading two two-level inverters. This inverter scheme does not experience neutral-point fluctuations. Of the two three-level inverters only one will be switching at any instant in the lower speed ranges. In the multilevel carrier-based SPWM used for the proposed drive, a progressive discrete DC bias depending on the speed range is given to the reference wave to reduce the inverter switchings. The drive is implemented and tested with a 1 HP open-end winding induction motor and experimental results are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The equivalence of triangle-comparison-based pulse width modulation (TCPWM) and space vector based PWM (SVPWM) during linear modulation is well-known. This paper analyses triangle-comparison based PWM techniques (TCPWM) such as sine-triangle PWM (SPWM) and common-mode voltage injection PWM during overmodulation from a space vector point of view. The average voltage vector produced by TCPWM during overmodulation is studied in the stationary (a-b) reference frame. This is compared and contrasted with the average voltage vector corresponding to the well-known standard two-zone algorithm for space vector modulated inverters. It is shown that the two-zone overmodulation algorithm itself can be derived from the variation of average voltage vector with TCPWM. The average voltage vector is further studied in a synchronously revolving (d-q) reference frame. The RMS value of low-order voltage ripple can be estimated, and can be used to compare harmonic distortion due to different PWM methods during overmodulation. The measured values of the total harmonic distortion (THD) in the line currents are presented at various fundamental frequencies. The relative values of measured current THD pertaining to different PWM methods tally with those of analytically evaluated RMS voltage ripple.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The voltage ripple and power loss in the DC-capacitor of a voltage source inverter depend on the harmonic currents flowing through the capacitor. This paper presents a double Fourier series based analysis of the harmonic contents of the DC capacitor current in a three-level neutral-point clamped (NPC) inverter, modulated with sine-triangle pulse-width modulation (SPWM) or conventional space vector pulse-width modulation (CSVPWM) schemes. The analytical results are validated experimentally on a 3-kVA three-level inverter prototype. The capacitor current in an NPC inverter has a periodicity of 120(a similar to) at the fundamental or modulation frequency. Hence, this current contains third-harmonic and triplen-frequency components, apart from switching frequency components. The harmonic components vary with modulation index and power factor for both PWM schemes. The third harmonic current decreases with increase in modulation index and also decreases with increase in power factor in case of both PWM methods. In general, the third harmonic content is higher with SPWM than with CSVPWM at a given operating condition. Also, power loss and voltage ripple in the DC capacitor are estimated for both the schemes using the current harmonic spectrum and equivalent series resistance (ESR) of the capacitor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado para obtenção do grau de Mestre em Engenharia Eletrotécnica Ramo Automação e Eletrónica Industrial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nei primi vent’anni, la ricerca in ambito fotovoltaico si è focalizzata sull’evoluzione di quelle tecnologie associate alla semplice cella ed al sistema intero, per offrire miglioramenti con particolare riguardo al fronte dell’efficienza. Negli ultimi decenni, lo studio sull’energia rinnovabile ha ampliato i propri confini, sino a quella branca denominata elettronica di potenza, che ne permette la conversione e lo sfruttamento da parte dell’utente. L’elaborato si propone quindi di apportare un contributo verso tale direzione, teorico piuttosto che pratico, esaminando dapprima il mondo che effettivamente circonda l’impianto fotovoltaico grid-connected e successivamente ponderando e pianificando le scelte che conseguono dall’analisi letteraria. Particolare attenzione sarà rivolta al concetto di multilivello relativo agli inverter e agli aspetti che ne comportano il largo utilizzo nell’elettronica di potenza. Si stima che i primi brevetti risalgano a circa trent’anni orsono e uno di questi, tracciabile, riguarderebbe la configurazione a cascata di full-bridge, alimentati separatamente in DC, per ottenere a valle una scala di tensioni AC. Per mezzo di manipolazioni, nascerà in seguito il diode-clamped, attuale predecessore del Neutral Point Clamped T-Type Inverter. Si introdurranno pertanto le principali caratteristiche che contraddistinguono il convertitore, peculiare riguardo per la configurazione single leg nonché trifase. Ardua sarà la scelta sulla tecnica di controllo dell’inverter, sia per quanto concerne la fase simulativa che quella realizzativa, in quanto il dispositivo è indubbiamente considerato innovativo nel proprio campo di appartenenza. Convalidando la letteratura per mezzo di opportune simulazioni, si potrà procedere alla progettazione e quindi all’assemblaggio della scheda che effettivamente include l’inverter. Il lavoro implicherà numerose prove, effettuate in svariate condizioni di funzionamento, al fine di sostenere le conclusioni teoriche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The voltage source inverter (VSI) and current voltage source inverter (CSI) are widely used in industrial application. But the traditional VSIs and CSIs have one common problem: can’t boost or buck the voltage come from battery, which make them impossible to be used alone in Hybrid Electric Vehicle (HEV/EV) motor drive application, other issue is the traditional inverter need to add the dead-band time into the control sequence, but it will cause the output waveform distortion. This report presents an impedance source (Z-source network) topology to overcome these problems, it can use one stage instead of two stages (VSI or CSI + boost converter) to buck/boost the voltage come from battery in inverter system. Therefore, the Z-source topology hardware design can reduce switching element, entire system size and weight, minimize the system cost and increase the system efficiency. Also, a modified space vector pulse-width modulation (SVPWM) control method has been selected with the Z-source network together to achieve the best efficiency and lower total harmonic distortion (THD) at different modulation indexes. Finally, the Z-source inverter controlling will modulate under two control sequences: sinusoidal pulse width modulation (SPWM) and SVPWM, and their output voltage, ripple and THD will be compared.