970 resultados para SPOILAGE BACTERIA
Resumo:
To investigate microbial diversity and identify spoilage bacteria in fresh pork sausages during storage, twelve industrial pork sausages of different trademarks were stored at 4 ºC for 0, 14, 28 and 42 days, 80% relative humidity and packaged in sterile plastic bags. Microbiological analysis was performed. The pH and water activity (a w) were measured. The culture-independent method performed was the Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The culture-dependent method showed that the populations of mesophilic bacteria and Lactic Acid Bacteria (LAB) increased linearly over storage time. At the end of the storage time, the average population of microorganisms was detected, in general, at the level of 5 log cfu g-1. A significant (P < 0.005) increase was observed in pH and a w values at the end of the storage time. The PCR-DGGE allowed a rapid identification of dominant communities present in sausages. PCR-DGGE discriminated 15 species and seven genera of bacteria that frequently constitute the microbiota in sausage products. The most frequent spoilage bacteria identified in the sausages were Lactobacillus sakei and Brochothrix thermosphacta. The identification of dominant communities present in fresh pork sausages can help in the choice of the most effective preservation method for extending the product shelf-life.
Resumo:
The spoilage characteristics of bacterial strains were studied by growing them at 28 _+ 2 °C in agar and broth media prepared with sterile fish and prawn flesh homogenates. The percentage of spoilers found among the bacterial isolates tested, as shown by odour production and halo zone formation, was independent of the source of flesh used. Indole and fluorescent pigment production were also observed in the broth. Pseudomonas, Vibrio and Acinetobacter exhibited faster growth in flesh media than in the usual artificial media. Decrease of protein and lipid concentration in the clear zone of agar media suggests the utilization of the available substrate by spoilage bacteria.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibition of P. expansum infection in wounds of Golden Delicious apples. Four strains (TC97, AC318, TM319, and FF441) reduced the fungal rot diameter of the apples by 20%; only Weissella cibaria strain TM128 decreased infection levels by 50%. Cell-free supernatants of selected antagonistic bacteria were studied to determine the nature of the antimicrobial compounds produced. Organic acids were the preferred mediators of inhibition but hydrogen peroxide was also detected when strains BC48, TM128, PM141 and FF441 were tested against E. carotovora. While previous reports of antifungal activity by LAB are scarce, our results support the potential of LAB as biocontrol agents against postharvest rot. [Int Microbiol 2008; 11(4):231-236]
Resumo:
The aim of the present investigation is to build up the knowledge on the role of commensal bacteria present on the prawns during storage at various temperatures. The study Evaluates the nature of spoilage of prawns during storage at three different temperatures (28:2OC, 4°C and -18°C) by organoleptic assessment, accumulation of trim ethylamine, ammonia content, changes in the flesh pH and total heterotrophic bacterial population at various time intervals and to find out the changes in the proximate composition (protein, carbohydrate, lipid, ash and moisture) of the prawns during storage at various temperatures by estimating the contents at different time intervals along with spoilage assessment. The researcher studies the occurrence and role of various bacterial genera which form the component of spoilage flora during storage and determines the distribution of various hydrolytic enzyme producing bacteria by evaluating their ability to produce enzymes such as caseinase, gelatinase, amylase, lipase and urease. to assess the spoilage potential of the bacteria by testing their ability to reduce trimethylamine oxide (TMAO) to trimethylamine (TMA) and to produce odour in flesh broth and halos in flesh agar media.The researcher also gives stress on the growth kinetics of selected potential spoilers by growing_them in different media and to assess the effect of sodium chloride concentrations, temperature and pH on their growth, survival and. generation time.
Resumo:
The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189 +/- 58 operational taxonomic units (OTUs) but dropped to 27 +/- 12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota.
Resumo:
An antimicrobial peptide produced by a bacterium isolated from the effluent pond of a bovine abattoir was purified and characterized. The strain was characterized by biochemical profiling and 16S rDNA sequencing as Pseudomonas sp. The antimicrobial peptide was purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography. Direct activity on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was observed. A major band on SDS-PAGE suggested that the antimicrobial peptide has a molecular mass of about 30 kDa. The substance was inhibitory to a broad range of indicator strains, including pathogenic and food spoilage bacteria such as Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, among other. The partially purified antimicrobial substance remained active over a wide temperature range and was resistant to all proteases tested. This substance showed different properties than other antimicrobials from Pseudomonas species, suggesting a novel antimicrobial peptide was characterized.
Resumo:
Listeria monocytogenes is of particular concern for the food industry due to its psychrotolerant and ubiquitous nature. In this work, the ability of L monocytogenes culturable cells to adhere to stainless steel coupons was studied in co-culture with the bacteriocin-producing food isolate Lactobacillus sakei 1 as well as in the presence of the cell-free neutralized supernatant of L sakei 1 (CFSN-S1) containing sakacin 1. Results were compared with counts obtained using a non bacteriocin-producing strain (L sakei ATCC 15521) and its bacteriocin free supernatant (CFSN-SA). Culturable adherent L monocytogenes and lactobacilli cells were enumerated respectively on PALCAM and MRS agars at 3-h intervals for up to 12 h and after 24 and 48 h of incubation. Bacteriocin activity was evaluated by critical dilution method. After 6 h of incubation, the number of adhered L monocytogenes cells in pure culture increased from 3.8 to 5.3 log CFU/cm(2) (48h). Co-culture with L sakei 1 decreased the number of adhered L monocytogenes cells (P < 0.001) during all sampling times with counts lower than 3.0 log CFU/cm(2). The CFNS-S1 also led to a significant and similar reduction in culturable adhered L. monocytogenes counts for up to 24 h of incubation, however after 48 h of incubation, re-growth of L monocytogenes number of adhered cells was observed, likely due to lack of competition for nutrients. L sakei ATCC 15521 or its supernatant (CFNS-SA) did not reduce the number of adhered L monocytogenes cells on stainless steel surface and from 6 h of incubation, listerial counts were between 4.3 and 4.5 log CFU/cm(2). These results indicate that L sakei 1 and its bacteriocin sakacin 1 may be useful to inhibit early stages of L monocytogenes adherence to abiotic surface. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Em anos recentes, surgiram numerosos casos de intoxicação alimentar envolvendo patógenos emergentes. Estes casos levaram a um aumento da preocupação com a preservação dos alimentos minimamente processados e com a segurança alimentar. Este fato está induzindo a pesquisa por inibidores para estes patógenos e fatores para prolongar a vida de prateleira de produtos alimentícios. Entre as novas alternativas na preservação está a utilização de peptídeos antimicrobianos produzidos por bactérias. No presente trabalho uma bactéria identificada como Bacillus amyloliquefaciens LBM 5006 isolada de solos de mata Atlântica de Santa Catarina foi selecionada dentre outros microrganismos e sua capacidade de produzir antimicrobianos foi avaliada. O extrato bruto da cultura do isolado LBM 5006 foi caracterizado, sendo ativo contra importantes bactérias patogênicas e deteriorantes como Listeria monocytogenes, Bacillus cereus, Erwinia carotovora, Escherichia coli, dentre outras. Houve maior produção do antimicrobiano quando a bactéria foi propagada em caldo infusão de cérebro e coração (BHI) a 37o C durante 48 h. Após concentração, a atividade antimicrobiana resistiu ao tratamento com enzimas proteolíticas. A atividade antimicrobiana foi verificada em pHs ácidos, sendo inibida em pH 9 e 10. O extrato foi purificado por meio de cromatografia de gel filtração e extração com butanol. O teste qualitativo de ninidrina, juntamente com a espectroscopia de infravermelho e ultravioleta, feitos com a substância purificada revelou que o antimicrobiano possui natureza protéica. O antimicrobiano apresentou um efeito bacteriostático contra 106 UFC/mL de Listeria monocytogenes na concentração de 25 AU/ml.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Strain ST211CH, identified as a strain of Enterococcus faecium, isolated from Lombo produced a bacteriocin that inhibited the growth of Enterococcus spp., Listeria spp., Klebsiella spp., Lactobacillus spp., Pseudomonas spp., Staphylococcus spp. and Streptococcus spp. The mode of action of the bacteriocin named as bacteriocin ST211Ch was bactericidal against Enterococcus faecalis ATCC19443. As determined by Tricine-SDS-PAGE, the approximate molecular mass of the bacteriocin was 8.0 kDa. Loss in antimicrobial activity was recorded after treatment with proteolytic enzymes. Maximum activity of bacteriocin ST211Ch was measured in broth cultures of E. faecium strain ST211Ch after 24 h; thereafter, the activity was reduced. Bacteriocin ST211Ch remained active after exposure to various temperatures and pHs, as well as to Triton X-100, Tween-80, Tween-20, sodium dodecyl sulfate, NaCl, urea and EDTA. Effect of media components on production of bacteriocin ST211Ch was also studied. On the basis of PCR reactions targeting different bacteriocin genes, i.e. enterocins, curvacins and sakacins, no evidences for the presence of these genes in the total DNA of E. faecium strain ST211Ch was obtained. The bacterium most probably produced a bacteriocin different from those mentioned above. Based on the antimicrobial spectrum, stability and mode of action of bacteriocin ST211CH, E. faecium strain ST211Ch might be considered as a potential candidate with beneficial properties for use in biopreservation to control food spoilage bacteria.
Resumo:
Over the past 15 years the Italian brewing scene showed interesting changes, especially with regard to the creation of many breweries with an annual production of less than 10,000 hectoliters. The beers produced by microbreweries are very susceptible to attack by spoilage micro-organisms that cause the deterioration of beer quality characteristics. In addition, most of the microbreweries do not practice heat treatments of stabilization and do not carry out quality checks on the product. The high presence of beer spoilage bacteria is an economic problem for the brewing industry because it can damage the brand and it causes high costs of product retrieval. This thesis project was aimed to study the management of the production process in the Italian microbreweries within a production less than 10,000 hl. In particular, the annual production, type of plant, yeast management, process management, cleaning and sanitizing of a representative sample of microbreweries were investigated. Furthermore was made a collection of samples in order to identify, with simple methods, what are spoilage bacteria more present in the Italian craft beers. 21% of the beers analysed were positive at the presence of lactic acid bacteria. These analytical data show the importance of understanding what are the weak points of the production process that cause the development of spoilage bacteria. Finally, the thesis examined the actual production of two microbreweries in order to understand the process management that can promote the growth of spoilage bacteria in beer and production plant. The analysis of the data for the two case studies was helpful to understand what are the critical points where the microorganisms are most frequently in contact with the product. The hygiene practices are crucial to ensure the quality of the finished product, especially in the case of non-pasteurized beer.
Resumo:
La present tesi doctoral es centra en l'aplicació dels bacteris de l'àcid lactic (BAL) com a agents bioprotectors davant microorganismes patògens i deteriorants.Es van aïllar i seleccionar BAL de fruites i hortalisses fresques i es van assajar in vitro davant 5 microorganismes fitopatògens i 5 patògens humans.Es van realitzar assajos d'eficàcia en pomes Golden Delicious amb tots els aïllats enfront les infeccions causades pel fong Penicillium expansum. La soca més eficaç era Weissella cibaria TM128, que reduïa el diàmetre de les infeccions en un 50%.Les soques seleccionades es van assajar enfront els patògens Salmonella typhimurium, Escherichia coli i Listeria monocytogenes en enciams Iceberg i pomes Golden Delicious.Els BAL interferien eficientment amb el creixemet de S. typhimurium, and L. monocytogenes, però van mostrar poc efecte enfront E. coli.Finalment, es van realitzar assajos dosi-resposta amb les soques Leuconostoc mesenteroides CM135, CM160 and PM249 enfront L. monocytogenes. De totes les soques assajades, la soca CM160 va ser la més efectiva.
Resumo:
This study aimed to enumerate and identify lactic acid bacteria and Enterobacteriaceae from spoiled and nonspoiled chilled vacuum-packaged beef and determine their potential to cause blown pack spoilage. These microbial groups were also enumerated in nonspoiled samples and detected in abattoir samples. The potential of isolates to cause blown pack spoilage of vacuum-packaged beef stored at chilled temperature (4 degrees C) and abuse temperature (15 degrees C) was investigated. Populations of lactic acid bacteria in exudate of spoiled and nonspoiled samples were not significantly different (P > 0.05), whereas the number of lactic acid bacteria on the surface was significantly higher (P < 0.05) in spoiled samples as compared to nonspoiled samples. The population of Enterobacteriaceae species in exudate and on the surface of samples were significantly higher (P < 0.05) in spoiled packs in comparison with nonspoiled packs. Results of the deterioration potential showed that blown pack spoilage was noticeable after 7 days at 15 degrees C and after 6 weeks at 4 degrees C for samples inoculated with Hafnia alvei.