982 resultados para SPIN-FLAVOR OSCILLATIONS
Resumo:
We describe the system of massive Weyl fields propagating in a background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in a background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in a dense matter and a strong magnetic field. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study charmed baryon resonances that are generated dynamically within a unitary meson-baryon coupled-channel model that treats the heavy pseudoscalar and vector mesons on equal footing as required by heavy-quark symmetry. It is an extension of recent SU(4) models with t-channel vector-meson exchanges to an SU(8) spin-flavor scheme, but differs considerably from the SU(4) approach in how the strong breaking of the flavor symmetry is implemented. Some of our dynamically generated states can be readily assigned to recently observed baryon resonances, while others do not have a straightforward identification and require the compilation of more data as well as an extension of the model to d-wave meson-baryon interactions and p-wave coupling in the neglected s- and u-channel diagrams. Of several novelties, we find that the Delta c(2595), which emerged as a ND quasibound state within the SU(4) approaches, becomes predominantly a ND* quasibound state in the present SU(8) scheme.
Resumo:
Pós-graduação em Física - IFT
Resumo:
IceCube, ein Neutrinoteleskop, welches zur Zeit am Südpol aufgebaut und voraussichtlich 2011 fertiggestellt sein wird, kann galaktische Kernkollaps-Supernovae mit hoher Signifikanz und unübertroffener statistischer Genauigkeit der Neutrinolichtkurve detektieren. Derartige Supernovae werden begleitet von einem massiven Ausbruch niederenergetischer Neutrinos aller Flavour. Beim Durchfliegen des Detektormediums Eis entstehen Positronen und Elektronen, welche wiederum lokale Tscherenkowlichtschauer produzieren, die in ihrer Summe das gesamte Eis erleuchten. Ein Nachweis ist somit, trotz der Optimierung IceCubes auf hochenergetische Teilchenspuren, über eine kollektive Rauschratenerhöhung aller optischen Module möglich. Die vorwiegende Reaktion ist der inverse Betazerfall der Antielektronneutrinos, welcher über 90,% des gesamten Signals ausmacht.rnrnDiese Arbeit beschreibt die Implementierung und Funktionsweise der Supernova-Datennahme-Software sowie der Echtzeitanalyse, mit welcher die oben genannte Nachweismethode seit August 2007 realisiert ist. Die Messdaten der ersten zwei Jahre wurden ausgewertet und belegen ein extrem stabiles Verhalten des Detektors insgesamt sowie fast aller Lichtsensoren, die eine gemittelte Ausfallquote von lediglich 0,3,% aufweisen. Eine Simulation der Detektorantwort nach zwei unterschiedlichen Supernova-Modellen ergibt eine Sichtweite IceCubes, die im besten Falle bis zur 51,kpc entfernten Großen Magellanschen Wolke reicht. Leider ist der Detektor nicht in der Lage, die Deleptonisierungsspitze aufzulösen, denn Oszillationen der Neutrinoflavour innerhalb des Sterns modifizieren die Neutrinospektren ungünstig. Jedoch können modellunabhängig anhand des frühesten Signalanstiegs die inverse Massenhierarchie sowie $sin^2 2theta_{13} > 10^{-3}$ etabliert werden, falls die Entfernung zur Supernova $leq$,6,kpc beträgt. Gleiches kann durch Auswertung eines möglichen Einflusses der Erdmaterie auf die Neutrinooszillation mit Hilfe der Messung eines zweiten Neutrinodetektors erreicht werden.
Resumo:
Using the density matrix renormalization group, we investigate the Renyi entropy of the anisotropic spin-s Heisenberg chains in a z-magnetic field. We considered the half-odd-integer spin-s chains, with s = 1/2, 3/2, and 5/2, and periodic and open boundary conditions. In the case of the spin-1/2 chain we were able to obtain accurate estimates of the new parity exponents p(alpha)((p)) and p(alpha)((o)) that gives the power-law decay of the oscillations of the alpha-Renyi entropy for periodic and open boundary conditions, respectively. We confirm the relations of these exponents with the Luttinger parameter K, as proposed by Calabrese et al. [Phys. Rev. Lett. 104, 095701 (2010)]. Moreover, the predicted periodicity of the oscillating term was also observed for some nonzero values of the magnetization m. We show that for s > 1/2 the amplitudes of the oscillations are quite small and get accurate estimates of p(alpha)((p)) and p(alpha)((o)) become a challenge. Although our estimates of the new universal exponents p(alpha)((p)) and p(alpha)((o)) for the spin-3/2 chain are not so accurate, they are consistent with the theoretical predictions.
Resumo:
We consider the magnetoresistance oscillation phenomena in the Bechgaard salts (TMTSF)(2)X, where X = ClO4, PF6, and AsF6 in pulsed magnetic fields to 51 T. Of particular importance is the observation of a new magnetoresistance oscillation for X = ClO4 in its quenched state. In the absence of any Fermi-surface reconstruction due to anion order at low temperatures, all three materials exhibit nonmonotonic temperature dependence of the oscillation amplitude in the spin-density-wave (SDW) state. We discuss a model where, below a characteristic temperature T* within the SDW state, a magnetic breakdown gap opens. [S0163-1829(99)00904-2].
Resumo:
Neutrino oscillations are treated from the point of view of relativistic first quantized theories and compared to second quantized treatments. Within first quantized theories, general oscillation probabilities can be found for Dirac fermions and charged spin 0 bosons. A clear modification in the oscillation formulas can be obtained and its origin is elucidated and confirmed to be inevitable from completeness and causality requirements. The left-handed nature of created and detected neutrinos can also be implemented in the first quantized Dirac theory in the presence of mixing; the probability loss due to the changing of initially left-handed neutrinos to the undetected right-handed neutrinos can be obtained in analytic form. Concerning second quantized approaches, it is shown in a calculation using virtual neutrino propagation that both neutrinos and antineutrinos may also contribute as intermediate particles. The sign of the contributing neutrino energy may have to be chosen explicitly without being automatic in the formalism. At last, a simple second quantized description of the flavor oscillation phenomenon is devised. In this description there is no interference terms between positive and negative components, but it still gives simple normalized oscillation probabilities. A new effect appearing in this context is an inevitable but tiny violation of the initial flavor of neutrinos. The probability loss due to the conversion of left-handed neutrinos to right-handed neutrinos is also presented.
Resumo:
5 We employ the circular-polarization-resolved magnetophotoluminescence technique to probe the spin character of electron and hole states in a GaAs/AlGaAs strongly coupled double-quantum-well system. The photoluminescence (PL) intensities of the lines associated with symmetric and antisymmetric electron states present clear out-of-phase oscillations between integer values of the filling factor. and are caused by magnetic-field-induced changes in the population of occupied Landau levels near to the Fermi level of the system. Moreover, the degree of circular polarization of these emissions also exhibits the oscillatory behavior with increasing magnetic field. Both quantum oscillations observed in the PL intensities and in the degree of polarizations may be understood in terms of a simple single-particle approach model. The k . p method was used to calculate the photoluminescence peak energies and the degree of circular polarizations in the double-quantum-well structure as a function of the magnetic field. These calculations prove that the character of valence band states plays an important role in the determination of the degree of circular polarization and, thus, resulting in a magnetic-field-induced change of the polarization sign.
Resumo:
We show how to avoid unnecessary and uncontrolled assumptions usually made in the literature about soft SU(3) flavor symmetry breaking in determining the two-flavor nucleon matrix elements relevant for direct detection of weakly interacting massive particles (WIMPs). Based on SU(2) chiral perturbation theory, we provide expressions for the proton and neutron scalar couplings fp,nu and fp,nd with the pion-nucleon σ term as the only free parameter, which should be used in the analysis of direct detection experiments. This approach for the first time allows for an accurate assessment of hadronic uncertainties in spin-independent WIMP-nucleon scattering and for a reliable calculation of isospin-violating effects. We find that the traditional determinations of Vfpu−fnu and fpd−fnd are off by a factor of 2.
Resumo:
This Letter reports new results from the MINOS experiment based on a two-year exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent with quantum-mechanical oscillations of neutrino flavor with mass splitting vertical bar Delta m(2)vertical bar = (2.43 +/- 0.13) x 10(-3) eV(2) (68% C.L.) and mixing angle sin(2)(2 theta) > 0.90 (90% C.L.). Our data disfavor two alternative explanations for the disappearance of neutrinos in flight: namely, neutrino decays into lighter particles and quantum decoherence of neutrinos, at the 3.7 and 5.7 standard-deviation levels, respectively.
Resumo:
Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25 x 10(20) protons on target. A fit to neutrino oscillations yields values of vertical bar Delta m(2)vertical bar = (2.32(-0.08)(+0.12) x 10(-3) eV(2) for the atmospheric mass splitting and sin(2)(2 theta) > 0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.
Resumo:
We present the experimental and theoretical studies of the magnetoresistance oscillations induced by the resonance transitions of electrons between the tunnel-coupled states in double quantum wells. The suppression of these oscillations with increasing temperature is irrelevant to the thermal broadening of the Fermi distribution and reflects the temperature dependence of the quantum lifetime of electrons. The gate control of the period and amplitude of the oscillations is demonstrated.
Resumo:
We theoretically investigate spin-polarized transport in a system composed of a ferromagnetic scanning-tunneling-microscope (STM) tip coupled to an adsorbed atom (adatom) on a host surface. Electrons can tunnel directly from the tip to the surface or via the adatom. Since the tip is ferromagnetic and the host surface (metal or semiconductor) is nonmagnetic we obtain a spin-diode effect when the adatom is in the regime of single occupancy. This effect leads to an unpolarized current for direct bias (V > 0) and polarized current for reverse (V < 0) bias voltages, if the tip is nearby the adatom. Within the nonequilibrium Keldysh technique we analyze the interplay between the lateral displacement of the tip and the intra adatom Coulomb interaction on the spin-diode effect. As the tip moves away from the adatom the spin-diode effect vanishes and the currents become polarized for both V > 0 and V < 0. We also find an imbalance between the up and down spin populations in the adatom, which can be tuned by the tip position and the bias. Finally, due to the presence of the adsorbate on the surface, we observe spin-resolved Friedel oscillations in the current, which reflects the oscillations in the calculated local density of states (LDOS) of the subsystem surface + adatom.
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
Resumo:
Intervalley interference between degenerate conduction band minima has been shown to lead to oscillations in the exchange energy between neighboring phosphorus donor electron states in silicon [B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88, 027903 (2002); Phys. Rev. B 66, 115201 (2002)]. These same effects lead to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of crucial importance in the construction of silicon-based spin quantum computers. In this article we calculate the donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the Kohn-Luttinger electron wave functions. It is found that due to the rapidly oscillating nature of the terms they produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was done by Koiller, Hu, and Das Sarma, significantly reducing the complexity of calculations. We address issues of fabrication and calculate the expected exchange coupling between neighboring donors that have been implanted into the silicon substrate using an 15 keV ion beam in the so-called top down fabrication scheme for a Kane solid-state quantum computer. In addition, we calculate the exchange coupling as a function of the voltage bias on control gates used to manipulate the electron wave functions and implement quantum logic operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the magnitude of the exchange coupling between neighboring donor electrons. The zero-bias results reconfirm those previously obtained by Koiller, Hu, and Das Sarma.