999 resultados para SPHERULITIC GROWTH


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quantitative data on the crystallization kinetics of polymorphic polymers can be derived from the investigation of gross spherulitic morphology formed in isothermal conditions. Depending on distance between centers, and the time lag between their formation and relative growth rates, various types of boundary lines can be generated by the impinging of two spherical bodies whose radii increase linearly with time, In polymorphic polymers, different types of spherulites often develop simultaneously at different rates from sporadic or predetermined nuclei. In same cases, the so-called growth transformation, in which a nucleus of the fast growing specie is formed at the tip of an advancing lamella of the slower crystal form, provides an alternative mode of nucleation, It is shown that if only one event of growth transformation takes place at the front of a slow growing body, the fast growing spherulite swallows the parent one and the resultant shape of interspherulitic boundary is described by two symmetrical logarithmic spirals whose parameters can be extracted from micrographs taken at the end of crystallization. These concepts are applied to determine the radial growth rate of gamma form spherulites of polypivalolactone in a wide range of temperatures through analysis of the alpha/gamma interspherulitic profiles formed in isothermal conditions and direct measurement of the growth rate of the alpha counterparts at the same temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the isothermal crystallization kinetics of polypropylene (iPP) during self-nucleation was studied by means of differential scanning calorimetry(DSC). The iPP was melted at 438 K and then isothermally crystallized in the range of temperature between 421 and 425 K. The mechanism of nucleation and growth of iPP was discussed. The Avrami equation was applied to analyzing the process of isothermal crystallization of iPP from the melt. The average value of Avrami exponent is n=3.01, suggesting that the primary crystallization maybe corresponds to three-dimensional spherulitic growth. The K-g value obtained from Lauritzen-Hoffman equation is 1.128 X 10(5) K-2, which suggests that crystallization species should be regime I. The decrease of crystallization active energy and chain folding work indicates that the self-nucleation can greatly promote the overall crystallization of iPP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystalline modifications alpha and beta of polypropylene (PP) were studied by using polarized light microscopy (PLM), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Typically beta crystals surrounded by alpha spherulites were observed at low temperature. With increasing temperature the beta crystals melted and a new crystal appeared. More interestingly, the melting temperature of the new crystal was about 5degrees higher than that of alpha spherulites originally present in the sample formed isothermally. It was assumed that this new crystal was the recrystalline alpha crystal. This assumption was supported by the DSC results. Furthermore, the crystallization kinetics of the PP used was studied on the basis of the traditional Avrami analysis. As a result, the Avrami exponents of crystallization temperature from 120 to 130degreesC ranged between 4.21 and 3.60, indicating that the crystallization mechanism of PP order melt was spherulitic growth and random nucleation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystallization kinetics and the development of lamellar structure during the isothermal crystallization of poly (epsilon-caprolactone) (PCL) were investigated by means of differential scanning calorimetry (DSC) and real-time synchrotron small angle X-ray scattering (SR-SAXS) techniques, respectively. The Avrami analysis was performed to obtain the kinetics parameters. The value of Avrami index, n, is about 3, demonstrating a three-dimensional spherulitic growth on heterogeneous nuclei in the process of isothermal crystallization. The activation energy and the surface free energy of chain folding for isothermal crystallization were determined according to the Arrhenius equation and Hoffman-Lauritzen theory, respectively. In the process of nonisothermal crystallization of PCL, the value of Avrami index, n, is about 4, which demonstrates a three-dimensional spherulitic growth on homogeneous nuclei. In addition, lamellar parameters were obtained from the analysis of SR-SAXS data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isothermal crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was investigated by means of differential scanning calorimetry and polarized optical microscopy (POM). The Avrami analysis can be used successfully to describe the isothermal crystallization kinetics of PHBV, which indicates that the Avrami exponent n = 3 is good for all the temperatures investigated. The spherulitic growth rate, G, was determined by POM. The result shows that the G has a maximum value at about 353 K. Using the equilibrium melting temperature (448 K) determined by the Flory equation for melting point depression together with U-* = 1500 cal mol(-1), T-infinity = 30 K and T-g = 278 K, the nucleation parameter K-g was determined, which was found to be 3.14+/-0.07 x 10(5) (K-2), lower than that for pure PHB. The surface-free energy sigma = 2.55 x 10(-2) J m(-2) and sigma(e) = 2.70+/-0.06 x 10-2 J m(-2) were estimated and the work of chain-folding (q = 12.5+/-0.2 kJ mol(-1)) was derived from sigma(e), and found to be lower than that for PHB. This implies that the chains of PHBV are more flexible than that of PHB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) are investigated by differential scanning calorimetry over two temperature regions. The Avrami equation describes the primary stage of isothermal crystallization kinetics with the exponent n approximate to 2 for both melt and cold crystallization. With the Hoffman-Weeks method, the equilibrium melting point is estimated to be 406 degrees C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter (K-g) of the isothermal melt and cold crystallization is estimated. In addition, the K-g value of the isothermal melt crystallization is compared to those of the other poly(aryl ether ketone)s. (C) 2000 John Wiley & Sons, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonisothermal and isothermal melt crystallization kinetics of a novel aryl ether ketone polymer containing meta-phenylene linkages, PEKEKK (T/I), were studied by differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny and a new approach by combining the Avrami equation with the Ozawa equation could describe the nonisothermal crystallization. Isothermal crystallization could also be described by the Avrami equation. The activation energies were 187 and 159 kJ/mol for nonisothermal and isothermal crystallization, respectively. Using the Hoffman-Weeks method, the equilibrium melting point T-m(o) was estimated as 353 degrees C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter K-g of the isothermal melt crystallization was estimated as 5.49 x 10(5) K-2. The crystallization characteristics of PEKEKK (T/I) were compared with those of all-para PEKEKK. The differences were explained by differences in the chain flexibility of the two polymers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isothermal and non-isothermal crystallization kinetics of a syndiotactic polypropylene(sPP) sample synthesized by new metallocene catalyst at different annealing temperatures and different cooling rates have been investigated by using differential scanning calorimetry(DSC) and density analysis. The equilibrium melting temperature( T-m(0)) is 158 degrees C by Hoffman-Weeks method. The equilibrium heat of fusion(Delta H-m(0)) is 88J/g in terms of the density analysis and DSC methods. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are sigma = 5.2erg/cm(2) and sigma(e) = 69erg/cm(2), respectively. The work of chain folding is determined to be q = 33.75kJ/mol. Modified Avrami equation and Ozawa equation can be used to describe the non-isothermal crystallization behavior. And a new and convenient approach by combining the Avrami equation and Ozawa equation in a same crystallinity is used to describe the non-isothermal behavior as well. The crystallization activation energies are evaluated to be 73.7kJ/mol and 73.1kJ/mol for isothermal crystallization and non-isothermal crystallization, respectively. The Avrami exponent n is 1.5 similar to 1.6 for isothermal crystallization procedure, while the Avrami exponent n,is 2.5 similar to 3.5 for non-isothermal crystallization procedure. This indicated the difference of nucleation and growth between the two procedures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isothermal melt and cold crystallization kinetics of PEEKK have been investigated by differential scanning calorimetry in two temperature regions. During the primary crystallization process, the relative crystallinity develops with a time dependence described by the Avrami equation, with exponent n = 2 for both melt and cold crystallization. The activation energies are -544.5 and 466.7 kJ/mol for crystallization from the melt and amorphous glassy state, respectively. The equilibrium melting point T-m(o) is estimated to be 371 degrees C by using the Hoffman-Weeks approach. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are sigma=10 erg/cm(2) and sigma(e) = 60 erg/cm(2), respectively. The work of chain folding q is determined as 3.98 kcal/mol. These observed crystallization kinetic characteristics of PEEKK are compared with those of PEEK. (C) 1997 Elsevier Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isothermal melt and cold crystallization kinetics of PEDEKmK linked by meta-phenyl and biphenyl were investigated by differential scanning calorimetry in two temperature regions. Avrami analysis is used to describe the primary stages of the melt and cold crystallization, with exponent n = 2 and n = 4, respectively. The activation energies are -118 kJ/mol and 510 kJ/mol for crystallization from the melt and the glassy states, respectively. The equilibrium melting point T-m(0) is estimated to be 309 degrees C by using the Hoffman-Weeks approach, which compares favorably with determination from the Thomson-Gibbs method. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are sigma = 8.45 erg/cm(2) and sigma(e) = 45.17 erg/cm(2), respectively. The work of chain folding q is determined as 3.06 kcal/mol. These observed crystallization characteristics of PEDEKmK are compared with those of the other members of poly(aryl ether ketone) family. (C) 1997 John Wiley & Sons, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystallization kinetics of each constituent of poly(p-dioxanone)-b-poly(epsilon-caprolactone) diblock copolymers (PPDX-b-PCL) has been determined in a wide composition range by differential scanning calorimetry and compared to that of the equivalent homopolymers. Spherulitic growth rates were also measured by polarized optical microscopy while atomic force microscopy was employed to reveal the morphology of one selected diblock copolymer. It was found that crystallization drives structure formation and both components form lamellae within mixed spherulitic superstructures. The overall isothermal crystallization kinetics of the PPDX block at high temperatures, where the PCL is molten, was determined by accelerating the kinetics through a previous self-nucleation procedure. The application of the Lauritzen and Ho. man theory to overall growth rate data yielded successful results for PPDX and the diblock copolymers. The theory was applied to isothermal overall crystallization of previously self-nucleated PPDX ( where growth should be the dominant factor if self-nucleation was effective) and the energetic parameters obtained were perfectly matched with those obtained from spherulitic growth rate data of neat PPDX. A quantitative estimate of the increase in the energy barrier for crystallization of the PPDX block, caused by the covalently bonded molten PCL as compared to homo-PPDX, was thus determined. This energy increase can dramatically reduce the crystallization rate of the PPDX block as compared to homo-PPDX. In the case of the PCL block, both the crystallization kinetics and the self-nucleation results indicate that the PPDX is able to nucleate the PCL within the copolymers and heterogeneous nucleation is always present regardless of composition. Finally, preliminary results on hydrolytic degradation showed that the presence of relatively small amounts of PCL within PPDX-bPCL copolymers substantially retards hydrolytic degradation of the material in comparison to homo-PPDX. This increased resistance to hydrolysis is a complex function of composition and its knowledge may allow future prediction of the lifetime of the material for biomedical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brushite is a well known precursor of calcium oxalate monohydrate, the main mineral found in kidney stones having a monoclinic crystal structure. Here, we present a new method for biomimicking brushite using a single tube diffusion technique for gel growth. Brushite crystals were grown by precipitation of calcium hydrogen phosphate hydrate in a gelatin/glutamic acid network. They are compared with those produced in gel in the presence of urea. The aggregates were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and thermal gravimetric analysis (TGA). SEM revealed a change of morphology by glutamic acid from spherulitic growth to plate-shaped and mushroom-like forms consisting of crystal plates and highly ordered prismatic needles, respectively. Furthermore, brushite crystals grown in a gelatin/glutamic acid/urea network showed needle-shaped morphology being different from other brushite growth forms. The XRD method showed that cell parameters for brushite specimens were slightly larger than those of the American Mineral Society reference structure. The mushroom-like biomimetic composite bears a strong resemblance to the brushite kidney stones which may open up new future treatment options for crystal deposition diseases. Hence, suitable diets from glutamic acid rich foods could be recommended to inhibit and control brushite kidney stones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Block copolymers of poly(lactide) and poly(carbonate) were synthetized in three different compositions and characterized by 1H-NMR and ATR analyses. The compatibilization effect of this copolymers on 80/20 (w/w%) PLA/PCL blend was evaluated. SEM micrographs show that all the blends exhibit the typical sea-island morphology characteristic of immiscible blends with PCL finely dispersed in droplets on a PLA matrix. Upon the addiction of the copolymers a reduction on PCL droplets size is observable. At the same time, a Tg depression of the PLA phase is detected when the copolymers are added in the blend. These results indicate that these copolymers are effective as compatibilizers. The copolymer that acts as the best compatibilizer is the one characterized by the same amount of PLA and PC as repeating units. As result, in the blend containing this copolymer PLA phase exhibits the highest spherulitic growth rate. An analyses on PLA phase crystallization behaviour from the glassy state within the blends was evaluated by DSC experiments. Isothermal cold crystallization of the PLA phase is enhanced up an order of magnitude upon the blending with PCL. Annealing experiments demonstrated that the crystallization of the PCL phase induces the formation of active nuclei in PLA when cooled above cooled below Tg. When the crystallization rate of PCL is retarded, a reduction on PLA nucleation is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystalline syndiotatic 1,2-polybutadiene was synthesized with a catalyst consisting of iron acetylacetonate (Fe(acac)(3))-triisobutylaluminum (Al(i-Bu)(3))-diethyl phosphite (DEP), and the effects of crystal growth conditions on morphology of thin films of the polymer were investigated by transmission electron microscopy (TEM) and electron diffraction (ED) techniques. The polymer with melting point 179 degreesC was found to have 89.3% 1,2-content and 86.5% syndiotacticity by C-13 NMR measurement. The results of electron microscopic studies indicate that the solution-cast thin films of the syndiotatic 1,2-polybutadiene consist of lath-like lamellae with the c-axis perpendicular to the film plane, while a- and b-axes are in the film plane. The morphology of isothermally crystallized thin films of the polymer is temperature dependent. At lower crystallization temperatures (130 degreesC), a spherulitic structure consisting of flat-on lamellae is formed. With an increase in the crystallization temperature (e.g., at 140 degreesC), the spherulites and single faceted crystals coexist. At higher crystallization temperatures (150 degreesC), single crystals with a hexagonal prismatic shape are produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis presents the results of the investigations on the crystallisation ‘behaviour, detect structure end electrical properties of certain organic crystals---phthslic snhydride end potsssiun scid phthalate Hollow crystals of phthalic snhydride were grown from vapour. the norpholog of these hollow crystals were studied in detail and s. mechanism for their growth has been proposed. A closed crystal—vapour system was used to study the basal plane growth of the whiskers and the sequential growth, observed, confirmed the mechanism suggested for hollow crystals. The dendritic crystals of phthslic enhydride were grown, both iron the melt and solution. The observed morphologies of these dendrites ere described. Bpherulites of phthalic anhydride have been grown by the artificial initiation of nucleation, from melt and solution. The variation of the substructure oi’ these spherulites with the growth tenperature wee investigated. The spherulitic filll having ribbon substructure were etched to reveal dislocations. A mechanism for the formation of the observed etch pattern has been suggested. the slip occurring in these ribbons were studied and the results are presented