6 resultados para SPELAEUM
Resumo:
The first studies concerning the embryonic development of harvestmen started in the late 19th century, and focused mostly on holarctic species, and only three species of the suborder Laniatores (the largest, among the four suborders considered presently) were studied. Moreover, the last studies on embryology of harvestmen were made during the late 1970s. This study focused on the embryonic development of Ampheres leucopheus (Gonyleptidae, Caelopyginae) and Iporangaia pustulosa (Gonyleptidae, Progonyleptoidellinae). The embryonic development was followed in the field, by taking daily photographs of different eggs during about 2 months. When laid, eggs of A. leucopheus and I pustulosa have approximately 1.13 and 1.30 mm in diameter, respectively, and the second is embedded in a large amount of mucus. The eggs grow, mainly due to water absorption at the beginning of the process, and they reach a diameter of about 1.35 and 1.59 mm, respectively, close to hatching. It took, respectively, 29-56 days and 35-66 days from egg laying to hatching. For the description of the embryonic development, we use photographs from the field, SEM micrographs, and histological analysis. This allowed us, for instance, to document the progression of structures and pigmentation directly from live embryos in the field, and to record microstructures, such as the presence of perforations in the cuticle of the embryo in the place where eyes are developing. Yet, contrary to what was expected in the literature, we record an egg tooth in one of the studied laniatoreans. J. Exp. Zool. (Mol. Dev. Evol) 314B:489-502, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Goniosomatine harvestmen have strongly armed pedipalps, generally large bodies and, commonly, very long legs (sometimes more than 20 cm), and are distributed in the Brazilian Atlantic forest, from southern Bahia to Santa Catarina. Since they are conspicuous animals and individuals of some species tend to concentrate in caves (and also under rock boulders), they have been (and still are) the target of several studies, especially those focusing on reproductive and defensive behavior, population ecology, physiology, chromosomes, etc. In spite of their importance for biological studies (some species constitute important and frequently used models for these studies), the taxonomy of Goniosomatinae has faced some problems, including misidentification, a large number of undescribed species and the lack of a phylogenetic hypothesis for the relationships among its species (which would allow evolutionary studies to be made). The last taxonomic changes in the subfamily were made 60 years ago. Considering a taxonomic revision and cladistic analysis of the subfamily to be of paramount importance, the main scope of the present paper is to provide a cladistic analysis and taxonomic revision of the species of Goniosomatinae and a new arrangement of genera (and species). The main taxonomic changes are given as follows. Six genera are recognised within the subfamily: Goniosoma; the newly described genus Pyatan; the reestablished genera Serracutisoma, Heteromitobates and Mitogoniella; and Acutisoma. New generic synonyms include: Glyptogoniosoma = Goniosomella = Lyogoniosoma = Metalyogoniosoma = Xulapona = Goniosoma, Acutisomelloides = Pygosomoides = Spelaeosoma = Serracutisoma; and Acutisomella = Heteromitobates. Newly described species include: Goniosoma capixaba; G. apoain; Pyatan insperatum DaSilva, Stefanini-Jim & Gnaspini; Serracutisoma pseudovarium; S. fritzmuelleri; S. guaricana; Heteromitobates anarchus; H. harlequin; H. alienus; Mitogoniella taquara; M. unicornis; and Acutisoma coriaceum. New combinations include: Goniosoma macracanthum (Mello-Leitao, 1922); G. unicolor (Mello-Leitao, 1932); G. carum (Mello-Leitao, 1936); Serracutisoma proximum (Mello-Leitao, 1922); S. banhadoae (Soares & Soares, 1947); S. molle (Mello-Leitao, 1933); S. thalassinum (Simon, 1879); S. catarina (Machado, Pinto-da-Rocha & Ramires, 2002); S. inerme (Mello-Leitao, 1927); S. spelaeum (MelloLeitao, 1933); Heteromitobates inscriptus (Mello-Leitao, 1922); H. albiscriptus (Mello-Leitao, 1932); Mitogoniella modesta (Perty, 1833); and M. badia (Koch, 1839). Reestablished combinations include: Mitogoniella indistincta MelloLeitao, 1936 and Acutisoma longipes Roewer, 1913. New speci. c synonyms include: Acutisomella cryptoleuca = Acutisomella intermedia = Goniosoma junceum = Goniosoma patruele = Goniosoma xanthophthalmum = Metalyogoniosoma unum = Goniosoma varium, Goniosoma geniculatum = Goniosoma venustum; Goniosomella perlata = Progoniosoma minense = Goniosoma vatrax, Glyptogoniosoma perditum = Progoniosoma cruciferum = Progoniosoma tijuca = Goniosoma dentipes; Leitaoius iguapensis = Leitaoius viridifrons = Serracutisoma proximum; Acutisoma marumbicola = Acutisoma patens = Serracutisoma thalassinum; Progoniosoma tetrasetae = Serracutisoma inerme; and Acutisoma monticola = Leitaoius nitidissimus = Leitaoius xanthomus = Mitogoniella mutila = Acutisoma longipes. The following species are considered species inquirenda: Goniosoma lepidum Gervais, 1844; G. monacanthum Gervais, 1844; G. obscurum Perty, 1833; G. versicolor Perty, 1833; and Mitogoniella badia (Koch, 1839). The monotpic genus Goniosomoides Mello-Leitao, 1932 (and its species, G. viridans Mello-Leitao, 1932) is removed from Goniosomatinae and considered incertae sedis.
Resumo:
Currently, 60 species of harvestmen have been karyotyped and all of these are from the Nearctic and Palearctic regions. This work is the first cytogenetic report of three gonyleptid species of the suborder Laniatores: Goniosoina aff. badiuln, G. proxiinuni and G. spelaeum of the Neotropical region, from the southeastern region of Brazil. Conventional Giemsa stain chromosome preparations were obtained from embryonic cells and adult male testes. Embryo mitotic plates of G. aff. badium and G. proximum indicated 88 chromosomes, and mitotic spermatogonial plates of G. spelaeum males revealed intra- and interindividual variation of chromosome number, ranging from 92-109 chromosomes. In the three analyzed species, the mitotic chromosomes were meta- or subinetacentric with no obvious sex chromosomes being identified during mitosis. Prophase I spermatocytes of G. spelaeum also revealed intra- and interindividual bivalent number variation and furthermore indicated the presence of multivalence. The karyotypes of these three Goniosoina species exhibited the largest chromosome pair with a negative heteropycnosis in the distal region of the shortest arrn chromosomes of G. spelaeum submitted to silver impregnation evidenced this negative heteropycnotic region as nucleolus organizer region (NOR). These results, when compared with cytogenetic data of other Laniatores species from the Palearctic region, indicated that a new record for diploid chromosome number probably characterize the genus Goniosoma in the Neotropical region.
Resumo:
We present the first record and description of the gregarious behavior of the Neotropical harvestmen Serracutisoma proximum (Mello-Leitao 1922) and Serracutisoma spelaeum (Mello-Leitao 1933) (Opiliones: Gonyleptidae: Goniosomatinae) (DaSilva & Gnaspini 2010). We followed and described the pattern of these aggregations over a period of 17 months in a cave in southeastern Brazil. Individuals of the two species aggregated with both conspecifics and heterospecifics during the non-reproductive season (i.e., from October to March, the cool and dry season). Aggregations contained up to 81 individuals, usually with a female-biased adult sex ratio. Multispecific aggregations were usually composed mainly of representatives of one of the two species, suggesting that although these species also aggregate with heterospecifics, there is a preference for aggregating with conspecifics. This study provides novel information on the social behavior of harvestmen, specifically regarding the composition of multispecific aggregations.
Resumo:
Brood desertion is a life history strategy that allows parents to minimize costs related to parental care and increase their future fecundity. The harvestman Neosadocus maximus is an interesting model organism to study costs and benefits of temporary brood desertion because females abandon their clutches periodically and keep adding eggs to their clutches for some weeks. In this study, we tested if temporary brood desertion (a) imposes a cost to caring females by increasing the risk of egg predation and (b) offers a benefit to caring females by increasing fecundity as a result of increased foraging opportunities. With intensive field observations followed by a model selection approach, we showed that the proportion of consumed eggs was very low during the day and it was not influenced by the frequency of brood desertion. The proportion of consumed eggs was higher at night and it was negatively related to the frequency of brood desertion. However, frequent brood desertion did not result in higher fecundity, measured both as the number of eggs added to the current clutch and the probability of laying a second clutch over the course of the reproductive season. Considering that harvestmen are sensitive to dehydration, brood desertion during the day may attenuate the physiological stress of remaining exposed on the vegetation. Moreover, since brood desertion is higher during the day, when egg predation pressure is lower, caring females could be adjusting their maternal effort to the temporal variation in predation risk, which is regarded as the main cost of brood desertion in ectotherms.