970 resultados para SPECTROSCOPIC ANALYSIS
Resumo:
Raman spectroscopic analyses of fragmented wall-painting specimens from a Romano-British villa dating from ca. 200 AD are reported. The predominant pigment is red haematite, to which carbon, chalk and sand have been added to produce colour variations, applied to a typical Roman limewash putty composition. Other pigment colours are identified as white chalk, yellow (goethite), grey (soot/chalk mixture) and violet. The latter pigment is ascribed to caput mortuum, a rare form of haematite, to which kaolinite (possibly from Cornwall) has been added, presumably in an effort to increase the adhesive properties of the pigment to the substratum. This is the first time that kaolinite has been reported in this context and could indicate the successful application of an ancient technology discovered by the Romano-British artists. Supporting evidence for the Raman data is provided by X-ray diffraction and SEM-EDAX analyses of the purple pigment.
Resumo:
The seawater neutralisation process is currently used in the Alumina industry to reduce the pH and dissolved metal concentrations in bauxite refinery residues, through the precipitation of Mg, Al, and Ca hydroxide and carbonate minerals. This neutralisation method is very similar to the co-precipitation method used to synthesise hydrotalcite (Mg6Al2(OH)16CO3•4H2O). This study looks at the effect of temperature on the type of precipitates that form from the seawater neutralisation process of Bayer liquor. The Bayer precipitates have been characterised by a variety of techniques, including X-ray diffraction, Raman spectroscopy and infrared spectroscopy. The mineralogical composition of Bayer precipitates largely includes hydrotalcite, hydromagnesite, and calcium carbonate species. XRD determined that Bayer hydrotalcites that are synthesised at 55 °C have a larger interlayer distance, indicating more anions are removed from Bayer liquor. Vibrational spectroscopic techniques have identified an increase in hydrogen bond strength for precipitates formed at 55 °C, suggesting the formation of a more stable Bayer hydrotalcite. Raman spectroscopy identified the intercalation of sulfate and carbonate anions into Bayer hydrotalcites using these synthesis conditions.
Resumo:
The mineral crandallite CaAl3(PO4)2(OH)5•(H2O) has been identified in deposits found in the Jenolan Caves, New South Wales, Australia by using a combination of X-ray diffraction and Raman spectroscopic techniques. A comparison is made between the vibrational spectra of crandallite found in the Jenolan Caves and a standard crandallite. Raman and infrared bands are assigned to PO43- and HPO42- stretching and bending modes. The predominant features are the internal vibrations of the PO43 and HPO42- groups. A mechanism for the formation of crandallite is presented and the conditions for the formation are elucidated.
Resumo:
Many phosphate containing minerals are found in the Jenolan Caves. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the mineral taranakite (K,NH4)Al3(PO4)3(OH)•9(H2O) which has been identified by X-ray diffraction. Jenolan Caves taranakite has been characterised by Raman spectroscopy. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of taranakite in the caves has been proven.
Resumo:
Biomimetic systems employed for biotechnological applications i.e. as biosensors or bio fuel cells, require initial formation of conducting support/protein complexes with controlled properties. The specific interaction of the protein with the support determines important qualities of the device such as electrical communication, long-term stability and catalytic efficiency. In this respect the system parameters have to be chosen in a way that high protein loading on the support is achieved while protein denaturation upon adsorption is prevented. The conditions on the surface have to be adjusted in such a way that the desired surface reaction of the protein i.e. electron transfer to either the electrode or a second redox partner, is still guaranteed. Hence the choice of support, its functionlisation as well as the right adjustment of solution parameters play a crucial role in the rational design of these support/protein constructs.
Resumo:
The present article describes a working or combined calibration curve in laser-induced breakdown spectroscopic analysis, which is the cumulative result of the calibration curves obtained from neutral and singly ionized atomic emission spectral lines. This working calibration curve reduces the effect of change in matrix between different zone soils and certified soil samples because it includes both the species' (neutral and singly ionized) concentration of the element of interest. The limit of detection using a working calibration curve is found better as compared to its constituent calibration curves (i.e., individual calibration curves). The quantitative results obtained using the working calibration curve is in better agreement with the result of inductively coupled plasma-atomic emission spectroscopy as compared to the result obtained using its constituent calibration curves.
Resumo:
151 p.
Raman spectroscopic analysis of chlorhexidine-myristic acid interaction in methacrylate biomaterials