994 resultados para SPACE LOSS
Resumo:
Distalization of maxillary molars is indicated for correction of Class II dental malocclusion and for space gain in cases of space deficiency. The ideal treatment with an intraoral fixed appliance for molar distalization should fulfill the following requirements: patient compliance; acceptable esthetics; comfort; minimum anterior anchor loss (as evidenced by inclination of incisors); bodily movement of the molars to avoid undesirable effects and unstable outcomes; and minimum time required during sessions for placement and activations. The purpose of this paper was to present an alternative treatment for space recovery in the area of the maxillary right second premolar when there has been significant mesial movement of the permanent maxillary right first molar. We used a modified appliance that allows unilateral molar distalization in cases of unilateral tooth/arch size discrepancy using the opposite side as anchor, thus reducing the mesialization of the anterior teeth. (Pediatr Dent 2008;30:334-41) Received August 17, 2006 / Last Revision October 17, 2007 / Revision Accepted October 17, 2007
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this master’s thesis is to investigate the loss behavior of three-level ANPC inverter and compare it with conventional NPC inverter. The both inverters are controlled with mature space vector modulation strategy. In order to provide the comparison both accurate and detailed enough NPC and ANPC simulation models should be obtained. The similar control model of SVM is utilized for both NPC and ANPC inverter models. The principles of control algorithms, the structure and description of models are clarified. The power loss calculation model is based on practical calculation approaches with certain assumptions. The comparison between NPC and ANPC topologies is presented based on results obtained for each semiconductor device, their switching and conduction losses and efficiency of the inverters. Alternative switching states of ANPC topology allow distributing losses among the switches more evenly, than in NPC inverter. Obviously, the losses of a switching device depend on its position in the topology. Losses distribution among the components in ANPC topology allows reducing the stress on certain switches, thus losses are equally distributed among the semiconductors, however the efficiency of the inverters is the same. As a new contribution to earlier studies, the obtained models of SVM control, NPC and ANPC inverters have been built. Thus, this thesis can be used in further more complicated modelling of full-power converters for modern multi-megawatt wind energy conversion systems.
Resumo:
The premature loss of primary teeth may harm the normal occlusal development, although there are debates relating to the necessity of using space maintainer appliances. The aim of the study is to evaluate the changes in the dental arch perimeter and the space reduction after the premature loss of the lower first primary molar in the mixed dentition stage. The sample consists of 4 lower arch plaster models of 31 patients, within the period of pre-extraction, 6, 12 and 18 months after the lower first primary molar extraction. A reduction of space was noted with the cuspid dislocation and the permanent incisors moving toward the space of the extraction site. It was concluded that the lower first molar primary premature loss, during the mixed dentition, implicates an immediate placement of a space maintainer.
Resumo:
There has been a rapid increase in the complexity and integration of many safety-critical systems. In consequence, it is becoming increasingly difficult to identify the causes of incidents and accidents back through the complex interactions that lead to an adverse event. At the same time, there is a growing appreciation of the need to consider a broad range of contextual factors in the aftermath of any mishap. A number of regulators, operators and research teams have responded to these developments by proposing novel techniques to support the analysis of complex, safety-critical incidents. It is important to illustrate these different approaches by applying them to a number of common case studies. The following pages, therefore, show how STAMP and AcciMap might support the Serviço Público Federal investigation into the explosion and fire of the Brazilian launch vehicle VLS-1 VO3. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
BackgroundThe success of epidural anaesthesia depends on correct identification of the epidural space. For several decades, the decision of whether to use air or physiological saline during the loss of resistance technique for identification of the epidural space has been governed by the personal experience of the anaesthesiologist. Epidural block remains one of the main regional anaesthesia techniques. It is used for surgical anaesthesia, obstetrical analgesia, postoperative analgesia and treatment of chronic pain and as a complement to general anaesthesia. The sensation felt by the anaesthesiologist from the syringe plunger with loss of resistance is different when air is compared with saline (fluid). Frequently fluid allows a rapid change from resistance to non-resistance and increased movement of the plunger. However, the ideal technique for identification of the epidural space remains unclear.ObjectivesTo evaluate the efficacy and safety of both air and saline in the loss of resistance technique for identification of the epidural space.To evaluate complications related to the air or saline injected.Search methodsWe searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2013, Issue 9), MEDLINE, EMBASE and the Latin American and Caribbean Health Science Information Database (LILACS) (from inception to September 2013). We applied no language restrictions. The date of the most recent search was 7 September 2013.Selection criteriaWe included randomized controlled trials (RCTs) and quasi-randomized controlled trials (quasi-RCTs) on air and saline in the loss of resistance technique for identification of the epidural space.Data collection and analysisTwo review authors independently assessed trial quality and extracted data.Main resultsWe included in the review seven studies with a total of 852 participants. The methodological quality of the included studies was generally ranked as showing low risk of bias inmost domains, with the exception of one study, which did not mask participants. We were able to include data from 838 participants in the meta-analysis. We found no statistically significant differences between participants receiving air and those given saline in any of the outcomes evaluated: inability to locate the epidural space (three trials, 619 participants) (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.33 to 2.31, low-quality evidence); accidental intravascular catheter placement (two trials, 223 participants) (RR 0.90, 95% CI 0.33 to 2.45, low-quality evidence); accidental subarachnoid catheter placement (four trials, 682 participants) (RR 2.95, 95% CI 0.12 to 71.90, low-quality evidence); combined spinal epidural failure (two trials, 400 participants) (RR 0.98, 95% CI 0.44 to 2.18, low-quality evidence); unblocked segments (five studies, 423 participants) (RR 1.66, 95% CI 0.72 to 3.85); and pain measured by VAS (two studies, 395 participants) (mean difference (MD) -0.09, 95% CI -0.37 to 0.18). With regard to adverse effects, we found no statistically significant differences between participants receiving air and those given saline in the occurrence of paraesthesias (three trials, 572 participants) (RR 0.89, 95% CI 0.69 to 1.15); difficulty in advancing the catheter (two trials, 227 participants) (RR 0.91, 95% CI 0.32 to 2.56); catheter replacement (two trials, 501 participants) (RR 0.69, 95% CI 0.26 to 1.83); and postdural puncture headache (one trial, 110 participants) (RR 0.83, 95% CI 0.12 to 5.71).Authors' conclusionsLow-quality evidence shows that results do not differ between air and saline in terms of the loss of resistance technique for identification of the epidural space and reduction of complications. Applicability might be compromised, as most of the results described in this review were obtained from parturient patients. This review underlines the need to conduct well-designed trials in this field.
Resumo:
Aims. We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. Methods. We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer**. Results. We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 +/- 0.001 AU. It has a radius of 0.57 +/- 0.02 R(J), a mass of 0.22 +/- 0.03 M(J), and therefore a mean density of 1.6 +/- 0.1 g cm(-3). Conclusions. With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm(-3)). We estimate its content in heavy elements to be 47-63 M(circle plus), and the mass of its hydrogen-helium envelope to be 7-23 M(circle plus). At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than similar to 0.1% over an assumed integrated lifetime of 3 Ga.
Resumo:
Objective To evaluate if two different measures of synovial activation, baseline Hoffa synovitis and effusion synovitis, assessed by MRI, predict cartilage loss in the tibiofemoral joint at 30 months follow-up in subjects with neither cartilage damage nor tibiofemoral radiographic osteoarthritis of the knee. Methods Non-contrast-enhanced MRI was performed using proton density-weighted fat-suppressed sequences in the axial and sagittal planes and a short tau inversion recovery sequence in the coronal plane. Hoffa synovitis, effusion synovitis and cartilage status were assessed semiquantitatively according to the WORMS scoring system. Included were knees that had neither radiographic osteoarthritis nor MRI-detected tibiofemoral cartilage damage at the baseline visit. The presence of Hoffa synovitis was defined as any grade = 2 (range 0-3) and effusion synovitis as any grade = 2 (range 0-3). Logistic regression was performed to examine the relation of the presence of either measure to the risk of cartilage loss at 30 months adjusting for other potential confounders. Results Of 514 knees included in the analysis, the prevalence of Hoffa synovitis and effusion synovitis at the baseline visit was 8.4% and 10.3%, respectively. In the multivariable analysis, baseline effusion synovitis was associated with an increased risk of cartilage loss. No such association was observed for baseline Hoffa synovitis. Conclusions Baseline effusion synovitis, but not Hoffa synovitis, predicted cartilage loss. The findings suggest that effusion synovitis, a reflection of inflammatory activity including joint effusion and synovitic thickening, may play a role in the future development of cartilage lesions in knees without osteoarthritis.
Resumo:
Consider a single processor and a software system. The software system comprises components and interfaces where each component has an associated interface and each component comprises a set of constrained-deadline sporadic tasks. A scheduling algorithm (called global scheduler) determines at each instant which component is active. The active component uses another scheduling algorithm (called local scheduler) to determine which task is selected for execution on the processor. The interface of a component makes certain information about a component visible to other components; the interfaces of all components are used for schedulability analysis. We address the problem of generating an interface for a component based on the tasks inside the component. We desire to (i) incur only a small loss in schedulability analysis due to the interface and (ii) ensure that the amount of space (counted in bits) of the interface is small; this is because such an interface hides as much details of the component as possible. We present an algorithm for generating such an interface.
Resumo:
The 2×2 MIMO profiles included in Mobile WiMAX specifications are Alamouti’s space-time code (STC) fortransmit diversity and spatial multiplexing (SM). The former hasfull diversity and the latter has full rate, but neither of them hasboth of these desired features. An alternative 2×2 STC, which is both full rate and full diversity, is the Golden code. It is the best known 2×2 STC, but it has a high decoding complexity. Recently, the attention was turned to the decoder complexity, this issue wasincluded in the STC design criteria, and different STCs wereproposed. In this paper, we first present a full-rate full-diversity2×2 STC design leading to substantially lower complexity ofthe optimum detector compared to the Golden code with only a slight performance loss. We provide the general optimized form of this STC and show that this scheme achieves the diversitymultiplexing frontier for square QAM signal constellations. Then, we present a variant of the proposed STC, which provides a further decrease in the detection complexity with a rate reduction of 25% and show that this provides an interesting trade-off between the Alamouti scheme and SM.
Resumo:
Earthquakes represent a major hazard for populations around the world, causing frequent loss of life,human suffering and enormous damage to homes, other buildings and infrastructure. The Technology Resources forEarthquake Monitoring and Response (TREMOR) Team of 36 space professionals analysed this problem over thecourse of the International Space University Summer Session Program and published their recommendations in the formof a report. The TREMOR Team proposes a series of space- and ground-based systems to provide improved capabilityto manage earthquakes. The first proposed system is a prototype earthquake early-warning system that improves theexisting knowledge of earthquake precursors and addresses the potential of these phenomena. Thus, the system willat first enable the definitive assessment of whether reliable earthquake early warning is possible through precursormonitoring. Should the answer be affirmative, the system itself would then form the basis of an operational earlywarningsystem. To achieve these goals, the authors propose a multi-variable approach in which the system will combine,integrate and process precursor data from space- and ground-based seismic monitoring systems (already existing andnew proposed systems) and data from a variety of related sources (e.g. historical databases, space weather data, faultmaps). The second proposed system, the prototype earthquake simulation and response system, coordinates the maincomponents of the response phase to reduce the time delays of response operations, increase the level of precisionin the data collected, facilitate communication amongst teams, enhance rescue and aid capabilities and so forth. It isbased in part on an earthquake simulator that will provide pre-event (if early warning is proven feasible) and post-eventdamage assessment and detailed data of the affected areas to corresponding disaster management actors by means of ageographic information system (GIS) interface. This is coupled with proposed mobile satellite communication hubs toprovide links between response teams. Business- and policy-based implementation strategies for these proposals, suchas the establishment of a non-governmental organisation to develop and operate the systems, are included.
Resumo:
In this work we consider the transient stability of coupled motions of a 2 D.O.F. nonlinear oscillator that can represent, for example, the motions of a sea vessel under the action of trains of regular lateral waves. Instability is studied as the escape of the system from a safe potential well. The set of initial conditions in phase space that lead to acceptable motions constitutes its safe basin. We investigate the evolution of these safe basins under variation of parameters such as frequency and amplitude of waves, and an internal tuning parameter. Complex nonlinear phenomena are known to play an important role in determining the loss of safe basins as, say, wave amplitude is increased. We therefore investigate those processes, and attempt to classify them in terms of their speed relative to changes in parameter values. "Mechanism basins" are produced depicting regions of parameter space in which rapid or slow losses of safe basin are observed. We propose that a comprehensive understanding of mechanisms of loss of safe basins can be a valuable tool in assessing stability properties of these systems, and we give a conceptual view of how such information could be used.
Resumo:
Permanent magnet synchronous machines (PMSM) have become widely used in applications because of high efficiency compared to synchronous machines with exciting winding or to induction motors. This feature of PMSM is achieved through the using the permanent magnets (PM) as the main excitation source. The magnetic properties of the PM have significant influence on all the PMSM characteristics. Recent observations of the PM material properties when used in rotating machines revealed that in all PMSMs the magnets do not necessarily operate in the second quadrant of the demagnetization curve which makes the magnets prone to hysteresis losses. Moreover, still no good analytical approach has not been derived for the magnetic flux density distribution along the PM during the different short circuits faults. The main task of this thesis is to derive simple analytical tool which can predict magnetic flux density distribution along the rotor-surface mounted PM in two cases: during normal operating mode and in the worst moment of time from the PM’s point of view of the three phase symmetrical short circuit. The surface mounted PMSMs were selected because of their prevalence and relatively simple construction. The proposed model is based on the combination of two theories: the theory of the magnetic circuit and space vector theory. The comparison of the results in case of the normal operating mode obtained from finite element software with the results calculated with the proposed model shows good accuracy of model in the parts of the PM which are most of all prone to hysteresis losses. The comparison of the results for three phase symmetrical short circuit revealed significant inaccuracy of the proposed model compared with results from finite element software. The analysis of the inaccuracy reasons was provided. The impact on the model of the Carter factor theory and assumption that air have permeability of the PM were analyzed. The propositions for the further model development are presented.
Resumo:
This paper describes a multi-robot localization scenario where, for a period of time, the robot team loses communication with one of the robots due to system error. In this novel approach, extended Kalman filter (EKF) algorithms utilize relative measurements to localize the robots in space. These measurements are used to reliably compensate "dead-com" periods were no information can be exchanged between the members of the robot group.
Resumo:
Open solar flux (OSF) variations can be described by the imbalance between source and loss terms. We use spacecraft and geomagnetic observations of OSF from 1868 to present and assume the OSF source, S, varies with the observed sunspot number, R. Computing the required fractional OSF loss, χ, reveals a clear solar cycle variation, in approximate phase with R. While peak R varies significantly from cycle to cycle, χ is surprisingly constant in both amplitude and waveform. Comparisons of χ with measures of heliospheric current sheet (HCS) orientation reveal a strong correlation. The cyclic nature of χ is exploited to reconstruct OSF back to the start of sunspot records in 1610. This agrees well with the available spacecraft, geomagnetic, and cosmogenic isotope observations. Assuming S is proportional to R yields near-zero OSF throughout the Maunder Minimum. However, χ becomes negative during periods of low R, particularly the most recent solar minimum, meaning OSF production is underestimated. This is related to continued coronal mass ejection (CME) activity, and therefore OSF production, throughout solar minimum, despite R falling to zero. Correcting S for this produces a better match to the recent solar minimum OSF observations. It also results in a cycling, nonzero OSF during the Maunder Minimum, in agreement with cosmogenic isotope observations. These results suggest that during the Maunder Minimum, HCS tilt cycled as over recent solar cycles, and the CME rate was roughly constant at the levels measured during the most recent two solar minima.