976 resultados para SOYBEAN PEROXIDASE
Resumo:
The influence of the allelochemicals ferulic (FA) and vanillic (VA) acids on peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activities and their relationships with phenolic acid (PhAs) contents and root growth of soybean (Glycine max (L.) Merr.) were examined. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.1 to 1 mM) for 48 h. Both compounds (at 0.5 and 1 mM) decreased root length (RL), fresh weight (FW) and dry weight (DW) and increased PhAs contents. At 0.5 and 1 mM, FA increased soluble POD activity (18% and 47%, respectively) and cell wall (CW)-bound POD activity (61% and 34%), while VA increased soluble POD activity (33% and 17%) but did not affect CW-bound POD activity. At I mM, FA increased (82%) while VA reduced (32%) PAL activities. The results are discussed on the basis of the role of these compounds on phenylpropanoid metabolism and root growth and suggest that the effects caused on POD and PAL activities are some of the many mechanisms by which allelochemicals influence plant growth.
Resumo:
Enzimas Peroxidases são heme-proteínas encontradas nos diferentes organismos vivos, especialmente vegetais, apresentam importante papel fisiológico/bioquímico como proteção contra microorganismos invasores. A soja, um dos mais importantes produtos para o agronegócio brasileiro apresenta na casca de suas sementes (subproduto) alta atividade de peroxidase, denominada soybean peroxidase,com potencial de utilização em métodos analíticos clínicos. A proposta do trabalho foi aplicar o planejamento fatorial para otimização das condições extração da enzima, definição das condições ótimas de atividade (pH e temperatura), utilizando metodologia de superfície de resposta. Os dados obtidos com clara definição foram: i) extração em pó cetonico, ii) meio reacional: pH 3,3, volume da amostra contendo a enzima 330 µL - 340 µL, peróxido de hidrogênio 4,2 mmol.L-1 150 µL, tempo de reação 20 segundos, temperatura 50º C, substrato guaiacol 30mmol.L-1 300 µL, e 0,1 mol.L-1 de NaCl. O uso da dessa metodologia para definição das condições de extração e estudos cinético-enzimáticos da peroxidase de soja foram eficientes e mais precisos, comparado a metodologia de variações/repetições (tentativa e erro).
Resumo:
Enzimas Peroxidases são heme-proteínas encontradas nos diferentes organismos vivos, especialmente vegetais, apresentam importante papel fisiológico/bioquímico como proteção contra microorganismos invasores. A soja, um dos mais importantes produtos para o agronegócio brasileiro apresenta na casca de suas sementes (subproduto) alta atividade de peroxidase, denominada soybean peroxidase,com potencial de utilização em métodos analíticos clínicos. A proposta do trabalho foi aplicar o planejamento fatorial para otimização das condições extração da enzima, definição das condições ótimas de atividade (pH e temperatura), utilizando metodologia de superfície de resposta. Os dados obtidos com clara definição foram: i) extração em pó cetonico, ii) meio reacional: pH 3,3, volume da amostra contendo a enzima 330 µL - 340 µL, peróxido de hidrogênio 4,2 mmol.L-1 150 µL, tempo de reação 20 segundos, temperatura 50º C, substrato guaiacol 30mmol.L-1 300 µL, e 0,1 mol.L-1 de NaCl. O uso da dessa metodologia para definição das condições de extração e estudos cinético-enzimáticos da peroxidase de soja foram eficientes e mais precisos, comparado a metodologia de variações/repetições (tentativa e erro).
Resumo:
The objective of this work was to study the intercropping of Brachiaria brizantha. Marandu with soybeans. The experiment has been planted in a 3 year prevailing area with no-tillage, in eutrophic Oxisol at Maripa - PR. The experimental design was a randomized block with five replications. For the forage study, four treatments were performed which consisted of seeding times brachiaria [early ( seven days before planting soybeans) joint (same day of soybean planting) and after (at stages V-3 and R-1 culture)] intercropping with soybean. To study the yield and crude protein and oil levels of the grain were adopted six treatments, which consisted of sowing dates of capim Marandu [early (seven days before planting soybeans), joint (same day of soybean planting) after (V-3, R-1 and R-5 soybean) and in single culture (single)]. The forager higher productivity of dry matter occurs with early sowing, however, the greatest reduction in soybean yield also occurs in this case. The sowing of Brachiaria until R-5 soy has no influence on the nutritional value of the forage. The intercropped of soybean with Brachiaria brizantha. Marandu has no impact on the leaf Nitrogen content, oil content and enzyme activity of soybean peroxidase. The highest yield of soybeans occurs when it is grown single or Brachiaria is sown in stage R-5. The crude protein content of soybean grain is reduced when brachiaria seeding is early or together with soybeans compared to single culture.
Resumo:
O microrreator faz parte de conjunto de dispositivos de uma nova e promissora tecnologia, que podem ser chamados de micro fabricados, atuante em campos como a da química, biológica, farmacêutica, engenharia química e biotecnologia. Trata-se de um dispositivo que possibilita reação química, tais como os reatores convencionais, mas com dimensões menores, com canais na escala micrométrica. A tecnologia de miniaturização de dispositivos para reações químicas vem se expandindo promovendo uma importante evolução, com microssistemas que abrange dispositivos mais eficazes, com configuração e geometrias específicas e menor consumo de energia, onde reações com elevadas taxas de transporte podem ser usadas para muitas finalidades diferentes, tais como, reações rápidas, mistura, reações sensíveis à temperatura, temperatura de homogeneização, ou até mesmo precipitação de nano partículas. Devido sua escala ser extremamente reduzida em relação à escala macro, oferecem um sistema que permite uma investigação do processo em um curto espaço de tempo, sendo muito útil para o rastreio de substratos, enzimas, condições de reação, bem como a determinação de parâmetros cinéticos. O presente trabalho teve por objetivo estudar a biodegradação enzimática de 2,4,6-Triclorofenol, com a utilização das enzimas Lacase e Soybean Peroxidase em microrreator da Syrris com volume de 250 ?l, que permite o estudo de cinéticas muito rápidas. Para as análises de degradação utilizou-se duas enzimas, a Lacase em concentrações de 0,05; 0,1 e 0,2 mg/ml; e a Soybean Peroxidase em concentrações de 0,0005; 0,001 e 0,002 mg/ml com a adição de Peróxido de Hidrogênio. Através dos ensaios realizados obteve-se dados experimentais da reação enzimática, possibilitando a verificação da taxa inicial de reação e sua cinética. Posteriormente, realizou-se as análises em simulação utilizando os dados experimentais, que através de um sistema de EDOs estimando inicialmente as constantes cinéticas k1, k2 e k3 usando a ferramenta ESTIMA, onde apresentaram duas respostas, uma resposta típica de mínimos quadrados, e a outra resposta que a velocidade inicial, que foi melhor representada pelos parâmetros obtidos. O método empregado na degradação do substrato, o microrreator mostrou-se eficiente, permitindo a detecção de baixo consumo de substrato para a determinação da taxa inicial, em curto tempo de residência. Perante os ensaios realizados com Lacase e Soybean Peroxidase, o microrreator é também um equipamento eficaz na repetitividade e na reprodutibilidade dos dados obtidos em diferentes concentrações.
Resumo:
Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection.
Resumo:
Hemoproteins are a very important class of enzymes in nature sharing the essentially same prosthetic group, heme, and are good models for exploring the relationship between protein structure and function. Three important hemoproteins, chloroperoxidase (CPO), horseradish peroxidase (HRP), and cytochrome P450cam (P450cam), have been extensively studied as archetypes for the relationship between structure and function. In this study, a series of 1D and 2D NMR experiments were successfully conducted to contribute to the structural studies of these hemoproteins. ^ During the epoxidation of allylbenzene, CPO is converted to an inactive green species with the prosthetic heme modified by addition of the alkene plus an oxygen atom forming a five-membered chelate ring. Complete assignment of the NMR resonances of the modified porphyrin extracted and demetallated from green CPO unambiguously established the structure of this porphyrin as an NIII-alkylated product. A novel substrate binding motif of CPO was proposed from this concluded regiospecific N-alkylation structure. ^ Soybean peroxidase (SBP) is considered as a more stable, more abundant and less expensive substitute of HRP for industrial applications. A NMR study of SBP using 1D and 2D NOE methods successfully established the active site structure of SBP and consequently fills in the blank of the SBP NMR study. All of the hyperfine shifts of the SBP-CN- complex are unambiguously assigned together with most of the prosthetic heme and all proximal His170 resonances identified. The active site structure of SBP revealed by this NMR study is in complete agreement with the recombinant SBP crystal structure and is highly similar to that of the HRP with minor differences. ^ The NMR study of paramagnetic P450cam had been greatly restricted for a long time. A combination of 2D NMR methods was used in this study for P450cam-CN - complexes with and without camphor bound. The results lead to the first unequivocal assignments of all heme hyperfine-shifted signals, together with certain correlated diamagnetic resonances. The observed alternation of the assigned novel proximal cysteine β-CH2 resonances induced by camphor binding indicated a conformational change near the proximal side.^
Resumo:
Simultaneous effects of ferulic (FA) and vanillic (VA) acids on peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activities on soybean (Glycine max (L.) MERR.) root growth were analyzed. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.5 mM; 1.0 mM or equimolar mixtures) for 48 h. Acting alone, both compounds (at 0.5 or 1.0 mM) decreased root length (RL), fresh weight (FW), dry weight (DW) and increased soluble POD and cell wall (CW)-bound POD activities. At 1.0 mM, FA increased (but VA decreased) the PAL activity. Acting simultaneously, the effects of the allelochemical interaction were lower than the sum of the effects of each compound tested separately, suggesting antagonism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Changes in protein content, peroxidase activity, and isozyme profiles in response to soybean aphid feeding were documented at V1 (fully developed leaves at unifoliate node, first trifoliate leaf unrolled) and V3 (fully developed leaf at second trifoliate node, third trifoliate leaf unrolled) stages of soybean aphid-tolerant (KS4202) and -susceptible (SD76R) soybeans. Protein content was similar between infested and control V1 and V3 stage plants for both KS4202 and SD76R at 6, 16, and 22 d after aphid introduction. Enzyme kinetics studies documented that control and aphid-infested KS4202 V1 stage and SD76R V1 and V3 stages had similar levels of peroxidase activity at the three time points evaluated. In contrast, KS4202 aphid-infested plants at the V3 stage had significantly higher peroxidase activity levels than control plants at 6 and 22 d after aphid introduction. The differences in peroxidase activity observed between infested and control V3 stage KS4202 plants at these two time points suggest that peroxidases may be playing multiple roles in the tolerant plant. Native gels stained for peroxidase were able to detect differences in the isozyme profiles of aphid-infested and control plants for both KS4202 and SD76R.
Resumo:
Pinus taeda wood chips were treated with the biopulping fungus Ceriporiopsis subvermispora in soybean-oil-amended cultures The secretion of oxalic acid and the accumulation of thiobarbituric acid reactive substances were significantly increased in soybean-oil-amended cultures By contrast the secretion of hydrolytic and oxidative enzymes was not altered in the cultures Biotreated wood samples were characterized for weight and component losses as well as by in-situ thioacidolysis Residual lignins were also extracted from biotreated wood using a mild-non-razing extraction procedure The lignins were characterized by (31)P nuclear magnetic resonance ((31)P-NMR) spectroscopy Soybean oil amendment in the cultures was found to affect lignin degradation routes however it inhibited depolymerization reactions detectable in the residual lignin that was retained in the biotreated wood As a consequence chemithermomechanical pulping of the biotreated samples was not improved by soybean oil amendment in the cultures Crown Copyright (C) 2010 Published by Elsevier Ltd All rights reserved
Resumo:
Glyphosate is a wide spectrum, non-selective, post-emergence herbicide. It acts on the shikimic acid pathway inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thus obstructing the synthesis of tryptophan, phenylalanine, tyrosine and other secondary products, leading to plant death. Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.)] expressing an glyphosate-insensitive EPSPS enzyme has provided new opportunities for weed control in soybean production. The effect of glyphosate application on chlorophyll level, lipid peroxidation, catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GOPX) and superoxide dismutase (SOD) activities, soluble amino acid levels and protein profile, in leaves and roots, was examined in two conventional (non-GR) and two transgenic (GR) soybean. Glyphosate treatment had no significant impact on lipid peroxidation, whilst the chlorophyll content decreased in only one non-GR cultivar. However, there was a significant increase in the levels of soluble amino acid in roots and leaves, more so in non-GR than in GR soybean cultivars. Root CAT activity increased in non-GR cultivars and was not altered in GR cultivars. In leaves, CAT activity was inhibited in one non-GR and one GR cultivar. GOPX activity increased in one GR cultivar and in both non-GR cultivars. Root APX activity increased in one GR cultivar. The soluble protein profiles as assessed by 1-D gel electrophoresis of selected non-GR and GR soybean lines were unaffected by glyphosate treatment. Neither was formation of new isoenzymes of SOD and CAT observed when these lines were treated by glyphosate. The slight oxidative stress generated by glyphosate has no relevance to plant mortality. The potential antioxidant action of soluble amino acids may be responsible for the lack of lipid peroxidation observed. CAT activity in the roots and soluble amino acids in the leaves can be used as indicators of glyphosate resistance.
Resumo:
Ceriporiopsis subvermispora is a selective fungus in the wood delignification and the most promising in biopulping. Through the lipid peroxidation initiated by manganese peroxidase (MnP), free radicals can be generated, which can act in the degradation of lignin nonphenolic structures. This work evaluated the prooxidant activity (based in lipid peroxidation) of enzymatic extracts from wood biodegradation by this fungus in cultures containing exogenous calcium, oxalic acid or soybean oil. It was observed that MnP significant activity is required to promote lipid peroxidation and wood delignification. Positive correlation between prooxidant activity x MnP was observed up to 300 IU kg-1 of wood.
Resumo:
Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)