1000 resultados para SOUTHERN PERU
Resumo:
The fine-scale seismic structure of the central Mexico, southern Peru, and southwest Japan subduction zones is studied using intraslab earthquakes recorded by temporary and permanent regional seismic arrays. The morphology of the transition from flat to normal subduction is explored in central Mexico and southern Peru, while in southwest Japan the spatial coincidence of a thin ultra-slow velocity layer (USL) atop the flat slab with locations of slow slip events (SSEs) is explored. This USL is also observed in central Mexico and southern Peru, where its lateral extent is used as one constraint on the nature of the flat-to-normal transitions.
In western central Mexico, I find an edge to this USL which is coincident with the western boundary of the projected Orozco Fracture Zone (OFZ) region. Forward modeling of the 2D structure of the subducted Cocos plate using a finite-difference algorithm provides constraints on the velocity and geometry of the slab’s seismic structure in this region and confirms the location of the USL edge. I propose that the Cocos slab is currently fragmenting into a North Cocos plate and a South Cocos plate along the projection of the OFZ, by a process analogous to that which occurred when the Rivera plate separated from the proto-Cocos plate 10 Ma.
In eastern central Mexico, observations of a sharp transition in slab dip near the abrupt end of the Trans Mexican Volcanic Belt (TMVB) suggest a possible slab tear located within the subducted South Cocos plate. The eastern lateral extent of the USL is found to be coincident with these features and with the western boundary of a zone of decreased seismicity, indicating a change in structure which I interpret as evidence of a possible tear. Analysis of intraslab seismicity patterns and focal mechanism orientations and faulting types provides further support for a possible tear in the South Cocos slab. This potential tear, together with the tear along the projection of the OFZ to the northwest, indicates a slab rollback mechanism in which separate slab segments move independently, allowing for mantle flow between the segments.
In southern Peru, observations of a gradual increase in slab dip coupled with a lack of any gaps or vertical offsets in the intraslab seismicity suggest a smooth contortion of the slab. Concentrations of focal mechanisms at orientations which are indicative of slab bending are also observed along the change in slab geometry. The lateral extent of the USL atop the horizontal Nazca slab is found to be coincident with the margin of the projected linear continuation of the subducting Nazca Ridge, implying a causal relationship, but not a slab tear. Waveform modeling of the 2D structure in southern Peru provides constraints on the velocity and geometry of the slab’s seismic structure and confirms the absence of any tears in the slab.
In southwest Japan, I estimate the location of a possible USL along the Philippine Sea slab surface and find this region of low velocity to be coincident with locations of SSEs that have occurred in this region. I interpret the source of the possible USL in this region as fluids dehydrated from the subducting plate, forming a high pore-fluid pressure layer, which would be expected to decrease the coupling on the plate interface and promote SSEs.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Each summer between 1976 and 1984 research was conducted on the Quelccaya Ice Cap with one central objective, to recover an ice core to bedrock from which an approximate 1000 year climatic history for tropical South America could be reconstructed. In 1983 that central objective was accomplished by recovering one core 155 meters in length containing 1350 years and a second core of 163.6 meters containing more than 1500 years of climatic history. ... The most significant climatic event in tropical South America over the last 1500 years was the "Little Ice Age" which is recorded between 1490 to 1880 A.D. in these ice core records. Records from the summit of the Quelccaya Ice Cap show that during the "Little Ice Age" period there was (1) a general increase in particulates (both insoluble and soluble, starting around 1490 A.D. and ending abruptly in 1880 A.D.; (2) an initial increase in net accumulation (1500-1720 A.D.) followed by a period of decreased net accumulation (1720-1860 A.D.); (3) more negative delta-O-18 values beginning in the 1520's and ending around 1880 A.D. The "Little Ice Age" event is evident as a perturbation in all five ice core parameters.
Resumo:
We describe the multidisciplinary findings in a pre-Columbian mummy head from Southern Peru (Cahuachi, Nazca civilisation, radiocarbon dating between 120 and 750 AD) of a mature male individual (40-60 years) with the first two vertebrae attached in pathological position. Accordingly, the atlanto-axial transition (C1/C2) was significantly rotated and dislocated at 38° angle associated with a bulging brownish mass that considerably reduced the spinal canal by circa 60%. Using surface microscopy, endoscopy, high-resolution multi-slice computer tomography, paleohistology and immunohistochemistry, we identified an extensive epidural hematoma of the upper cervical spinal canal-extending into the skull cavity-obviously due to a rupture of the left vertebral artery at its transition between atlas and skull base. There were no signs of fractures of the skull or vertebrae. Histological and immunohistochemical examinations clearly identified dura, brain residues and densely packed corpuscular elements that proved to represent fresh epidural hematoma. Subsequent biochemical analysis provided no evidence for pre-mortal cocaine consumption. Stable isotope analysis, however, revealed significant and repeated changes in the nutrition during his last 9 months, suggesting high mobility. Finally, the significant narrowing of the rotational atlanto-axial dislocation and the epidural hematoma probably caused compression of the spinal cord and the medulla oblongata with subsequent respiratory arrest. In conclusion, we suggest that the man died within a short period of time (probably few minutes) in an upright position with the head rotated rapidly to the right side. In paleopathologic literature, trauma to the upper cervical spine has as yet only very rarely been described, and dislocation of the vertebral bodies has not been presented.
Resumo:
"October 1957."
Resumo:
U.S. Atomic Energy Commission. Division of Raw Materials.
Resumo:
Manu National Park of southern Peru is one of the most renowned protected areas in the world, yet large-bodied vertebrate surveys conducted to date have been restricted to Cocha Cashu Biological Station, a research station covering <0.06 percent of the 1.7Mha park. Manu Park is occupied by >460 settled Matsigenka Amerindians, 300-400 isolated Matsigenka, and several, little-known groups of isolated hunter-gatherers, yet the impact of these native Amazonians on game vertebrate populations within the park remains poorly understood. On the basis of 1495 km of standardized line-transect censuses, we present density and biomass estimates for 23 mammal, bird, and reptile species for seven lowland and upland forest sites in Manu Park, including Cocha Cashu. We compare these estimates between hunted and nonhunted sites within Manu Park, and with other Neotropical forest sites. Manu Park safeguards some of the most species-rich and highest biomass assemblages of arboreal and terrestrial mammals ever recorded in Neotropical forests, most likely because of its direct Andean influence and high levels of soil fertility. Relative to Barro Colorado Island, seed predators and arboreal folivores in Manu are rare, and generalist frugivores specializing on mature fruit pulp are abundant. The impact of such a qualitative shift in the vertebrate community on the dynamics of plant regeneration, and therefore, on our understanding of tropical plant ecology, must be profound. Despite a number of external threats, Manu Park continues to serve as a baseline against which other Neotropical forests can be gauged.
Resumo:
Fog oases, locally named Lomas, are distributed in a fragmented way along the western coast of Chile and Peru (South America) between ~6°S and 30°S following an altitudinal gradient determined by a fog layer. This fragmentation has been attributed to the hyper aridity of the desert. However, periodically climatic events influence the ‘normal seasonality’ of this ecosystem through a higher than average water input that triggers plant responses (e.g. primary productivity and phenology). The impact of the climatic oscillation may vary according to the season (wet/dry). This thesis evaluates the potential effect of climate oscillations, such as El Niño Southern Oscillation (ENSO), through the analysis of vegetation of this ecosystem following different approaches: Chapters two and three show the analysis of fog oasis along the Peruvian and Chilean deserts. The objectives are: 1) to explain the floristic connection of fog oases analysing their taxa composition differences and the phylogenetic affinities among them, 2) to explore the climate variables related to ENSO which likely affect fog production, and the responses of Lomas vegetation (composition, productivity, distribution) to climate patterns during ENSO events. Chapters four and five describe a fog-oasis in southern Peru during the 2008-2010 period. The objectives are: 3) to describe and create a new vegetation map of the Lomas vegetation using remote sensing analysis supported by field survey data, and 4) to identify the vegetation change during the dry season. The first part of our results show that: 1) there are three significantly different groups of Lomas (Northern Peru, Southern Peru, and Chile) with a significant phylogenetic divergence among them. The species composition reveals a latitudinal gradient of plant assemblages. The species origin, growth-forms typologies, and geographic position also reinforce the differences among groups. 2) Contradictory results have emerged from studies of low-cloud anomalies and the fog-collection during El Niño (EN). EN increases water availability in fog oases when fog should be less frequent due to the reduction of low-clouds amount and stratocumulus. Because a minor role of fog during EN is expected, it is likely that measurements of fog-water collection during EN are considering drizzle and fog at the same time. Although recent studies on fog oases have shown some relationship with the ENSO, responses of vegetation have been largely based on descriptive data, the absence of large temporal records limit the establishment of a direct relationship with climatic oscillations. The second part of the results show that: 3) five different classes of different spectral values correspond to the main land cover of Lomas using a Vegetation Index (VI). The study case is characterised by shrubs and trees with variable cover (dense, semi-dense and open). A secondary area is covered by small shrubs where the dominant tree species is not present. The cacti area and the old terraces with open vegetation were not identified with the VI. Agriculture is present in the area. Finally, 4) contrary to the dry season of 2008 and 2009 years, a higher VI was obtained during the dry season of 2010. The VI increased up to three times their average value, showing a clear spectral signal change, which coincided with the ENSO event of that period.
Resumo:
The Yanque nonsulfide Pb-Zn deposit (inferred resources 12.5 Mt @ 3.7% Pb and @ 3.5% Zn) is located in the Andahuaylas-Yauri ore province (Cuzco, southern Peru). The deposit occurs within a base metal mineralized district, centered on the medium-sized Dolores porphyry copper. A thorough geological, mineralogical and geochemical study has carried out in order to define: the relationships between the Dolores Cu-porphyry ore and the Yanque Zn-Pb polymetallic mineralization, and the characteristics of the economic nonsulfide concentrations. Both sedimentary and igneous rocks constitute the backbone of the Yanque-Dolores area. The sedimentary lithologies belong to the Soraya, Mara and Ferrobamba Fms. (upper Jurassic-middle Cretaceous). The Yanque orebody is hosted by the Mara Fm., which prevailingly consists of a siliciclastic sedimentary breccia. The original sulfide mineralization consisted of galena, pyrite and sphalerite. The host rock has been affected by a strong hydrothermal alteration, characterized by prevailing sericite/illite, as in the typical porphyry-related phyllic-argillic alteration stage, and by minor kaolinite, dolomite and quartz. Minor element geochemistry, characterized by Sb, As, Mn, Ag and locally also by Cu, points to magmatic-hydrothermal related mineralizing fluids. The Pb isotopic compositions from Dolores and Yanque sulfides are similar, and are typical of the Tertiary magmatically-derived ores in this part of Peru. The hydrothermally altered rocks at Yanque have the same Pb isotopic compositions as the sulfides, thus confirming the hypothesis that the Yanque primary Zn-Pb mineralization may have been produced by hydrothermal circulation related to the emplacement of the Dolores Cu-porphyry, as it is the case of other porphyry Cu systems associated with polymetallic mineralization elsewhere. However, no simple genetic model for the mineralization involving just one fluid circulation episode is able to explain the data. The Yanque economic nonsulfide ore association consists of sauconite, hemimorphite, smithsonite and cerussite, which result from the weathering and alteration of the original sulfide mineralization. Zinc is allocated mainly in sauconite (Zn-smectite), rather than in carbonates: a factor strictly related to the prevailing siliciclastic character of the host rock. Distinctive features of the Yanque orebody are the comparable ore grades for both Pb and Zn (3.5% Zn and 3.7% Pb), and the inverse supergene chemical zoning. In fact, contrary to other supergene ores of this type, zinc prevails in the top zone of the Yanque deposit, whereas lead content increases with depth. Considering the different mobility of the two metals in solution, it may be assumed that most of the primary zinc that was the source for the Yanque nonsulfides was originally located far from the position occupied by the galena mineralization, whose remnants have been observed on site. Zinc sulfides may have been originally contained in the eroded rock volumes that surrounded the actual deposit: the zinc-rich solutions have possibly migrated through the siliciclastic Mara Fm. and precipitated the nonsulfide minerals by porosity filling and replacement processes. In this sense, the Yanque secondary Zn-Pb deposit could be considered as a special type of “Exotic” mineralization.
Resumo:
In this thesis, I develop the velocity and structure models for the Los Angeles Basin and Southern Peru. The ultimate goal is to better understand the geological processes involved in the basin and subduction zone dynamics. The results are obtained from seismic interferometry using ambient noise and receiver functions using earthquake- generated waves. Some unusual signals specific to the local structures are also studied. The main findings are summarized as follows:
(1) Los Angeles Basin
The shear wave velocities range from 0.5 to 3.0 km/s in the sediments, with lateral gradients at the Newport-Inglewood, Compton-Los Alamitos, and Whittier Faults. The basin is a maximum of 8 km deep along the profile, and the Moho rises to a depth of 17 km under the basin. The basin has a stretch factor of 2.6 in the center decreasing to 1.3 at the edges, and is in approximate isostatic equilibrium. This "high-density" (~1 km spacing) "short-duration" (~1.5 month) experiment may serve as a prototype experiment that will allow basins to be covered by this type of low-cost survey.
(2) Peruvian subduction zone
Two prominent mid-crust structures are revealed in the 70 km thick crust under the Central Andes: a low-velocity zone interpreted as partially molten rocks beneath the Western Cordillera – Altiplano Plateau, and the underthrusting Brazilian Shield beneath the Eastern Cordillera. The low-velocity zone is oblique to the present trench, and possibly indicates the location of the volcanic arcs formed during the steepening of the Oligocene flat slab beneath the Altiplano Plateau.
The Nazca slab changes from normal dipping (~25 degrees) subduction in the southeast to flat subduction in the northwest of the study area. In the flat subduction regime, the slab subducts to ~100 km depth and then remains flat for ~300 km distance before it resumes a normal dipping geometry. The flat part closely follows the topography of the continental Moho above, indicating a strong suction force between the slab and the overriding plate. A high-velocity mantle wedge exists above the western half of the flat slab, which indicates the lack of melting and thus explains the cessation of the volcanism above. The velocity turns to normal values before the slab steepens again, indicating possible resumption of dehydration and ecologitization.
(3) Some unusual signals
Strong higher-mode Rayleigh waves due to the basin structure are observed in the periods less than 5 s. The particle motions provide a good test for distinguishing between the fundamental and higher mode. The precursor and coda waves relative to the interstation Rayleigh waves are observed, and modeled with a strong scatterer located in the active volcanic area in Southern Peru. In contrast with the usual receiver function analysis, multiples are extensively involved in this thesis. In the LA Basin, a good image is only from PpPs multiples, while in Peru, PpPp multiples contribute significantly to the final results.
Resumo:
The genus Orobothriurus Maury, 1976 (Bothriuridae Simon, 1880) displays an Andean pattern of distribution, most of its species occurring at high altitudes (over 2000-2500 m to a maximum altitude record of 4910 m) from central Peru to Argentina. The recent discovery of several new species and the uncertain phylogenetic position of Orobothriurus lourencoi Ojanguren Affilastro, 2003, required a reanalysis of Orobothriurus phylogeny. Thirty bothriurid taxa, including all species of Orobothriurus and Pachakutej Ochoa, 2004, were scored for 65 morphological characters and analysed with parsimony under equal and implied weighting. The resulting topology justifies the establishment of a new genus, Rumikiru Ojanguren Affilastro et al., in press, for O. lourencoi and a closely related, new species, Rumikiru atacama Ojanguren Affilastro et al., in press. It also offers new insights about the phylogeny and biogeography of Orobothriurus and related genera. Characters from the male genitalia (i.e. hemispermatophore), comprising approximately 26% of the morphological matrix, were found to be less homoplastic than those from somatic morphology, contradicting suggestions that genitalia are uninformative or potentially misleading in phylogenetic studies.
Resumo:
We revisit species diversity within Oreobates (Anura: Strabomantidae) by combining molecular phylogenetic analyses of the 16S rRNA amphibian barcode fragment with the study of the external morphology of living and preserved specimens. Molecular and morphological evidence support the existence of 23 species within Oreobates, and three additional candidate species (Oreobates sp. [Ca JF809995], Oreobates sp. [Ca EU368903], Oreobates cruralis [Ca EU192295]). We describe and name three new species from the Andean humid montane forests of Departamento Cusco, southern Peru: O. amarakaeri New Species from Rio Nusinuscato and Rio Mabe, at elevations ranging from 670 to 1000 m in the Andean foothills; O. machiguenga, new species, from Rio Kimbiri (1350 m), a small tributary of the Apurimac River, in the western versant of Cordillera Vilcabamba; and O. gemcare, new species, from the Kosnipata Valley at elevations ranging from 2400 to 2800 m. The three new species are readily distinguished from all other Oreobates by at least one qualitative morphological character. Three species are transferred to Oreobates from three genera of Strabomantidae: Hypodactylus lundbergi, Pristimantis crepitans, and Phrynopus ayacucho (for which the advertisement call, coloration in life, and male characteristics are described for first time). Oreobates simmonsi is transferred to the genus Lynchius. Hylodes verrucosus is considered a junior synonym of Hylodes philippi. In addition, H. philippi is removed from the synonymy of O. quixensis and considered a nomem dubium within Hypodactylus. The inclusion of Phrynopus ayacucho in Oreobates extends the ecological range of the genus to the cold Andean puna. Oreobates is thus distributed from the Amazonian lowlands in southern Colombia to northern Argentina, reaching the Brazilian Atlantic dry forests in eastern Brazil, across an altitudinal range from ca. 100 to 3850 m.
Resumo:
This chapter reviews the history of study and the current status of Mid-Holocene climatic and cultural change in the South Central Andes, which host a wide range of different habitats from Pacific coastal areas up to extremely harsh cold and dry environments of the high mountain plateau, the altiplano or the puna. Paleoenvironmental information reveals high amplitude and rapid changes in effective moisture during the Holocene period and, consequently, dramatically changing environmental conditions. Therefore, this area is suitable to study the response of hunting and gathering societies to environmental changes, because the smallest variations in the climatic conditions have large impacts on resources and the living space of humans. This chapter analyzes environmental and paleoclimatic information from lake sediments, ice cores, pollen profiles, and geomorphic processes and relates these with the cultural and geographic settlement patterns of human occupation in the different habitats in the area of southern Peru, southwest Bolivia, northwest Argentina, and north Chile and puts in perspective of the early and late Holocene to present a representative range of environmental and cultural changes. It has been found that the largest changes took place around 9000 cal yr BP when the humid early Holocene conditions were replaced by extremely arid but highly variable climatic conditions. These resulted in a marked decrease of human occupation, “ecological refuges,” increased mobility, and an orientation toward habitats with relatively stable resources (such as the coast, the puna seca, and “ecological refuges”).
Resumo:
We reconstructed changes of temperature, salinity, and productivity within the southern Peru-Chile Current during the last 8000 years from a high-resolution sediment core recovered at 41°S using alkenones, isotope ratios of planktic foraminifera, biogenic opal, and organic carbon. Paleotemperatures and paleosalinities reached maximum values at ~5500 years ago and thereafter declined to modern values, whereas paleoproductivity continuously increased throughout the last 8000 years. We ascribe these long-term Holocene trends primarily to latitudinal shifts of the Antarctic Circumpolar Current (ACC). The concurrence with shifts in the position of the Southern Westerlies points to a common response of atmospheric and oceanographic circulation patterns off southern Chile. Millennial- to centennial-scale fluctuations of paleotemperatures and paleosalinities, on the other hand, lag displacements in the position of the Southern Westerlies but reveal a significant correlation to short-term temperature changes in Antarctica, indicating a high-latitude control of the ACC at these timescales.