995 resultados para SOLVOTHERMAL SYNTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an efficient and fast solvothermal route to prepare highly crystalline monodispersed InP quantum dots. This solvothermal route, not only ensures inert atmosphere, which is strictly required for the synthesis of phase pure InP quantum dots but also allows a reaction temperature as high as 430 degrees C, which is otherwise impossible to achieve using a typical solution chemistry; the higher reaction temperature makes the reaction more facile. This method also has a judicious control over the size of the quantum dots and thus in tuning the bandgap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a facile, low-cost, solution-phase approach to the large-scale preparation of Hg1-xCdxTe nanostructures of different shapes such as nanorods, quantum dots, hexagonal cubes of different sizes and different compositions at a growth temperature of 180 degrees C using an air stable Te source by solvothermal technique. The XRD spectrum shows that the crystals are cubic in their basic structure and reveals the variation in lattice constant as a function of composition. The size and morphology of the products were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The formation of irregular shaped particles and few nano-rods in the present synthesis is attributed to the cetyl trimethylammonium bromide (CTAB). The room temperature FTIR absorption and PL studies for a compositon of x = 0.8 gives a band gap of 1.1 eV and a broad emission in NIR region (0.5-0.9 eV) with all bands attributed to surface defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Luminescent Ln (Eu3+, Tb3+) doped hydroxyapatite (Eu:HAp, Tb:HAp) phosphors were successfully fabricated via the cetyltrimethylammonium bromide (CTAB)/n-octane/n-butanol/water microemulsion-mediated solvothermal process. The structure, morphology, and optical properties were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) spectra as well as the kinetic decays, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel three-dimensional (3D) flowerlike MnWO4 micro/nanocomposite structure has been successfully synthesized for the first time. The synthesized products were systematically studied by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) and photoluminescence (PL) spectra. It is found that both reaction time and temperature have significant effects on the morphology of the products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional hexagonal Ba2CIF3 microrods with highly uniform morphology and size have been successfully synthesized via a facile solvothermal method at a low temperature (160 degrees C). X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the samples. The synthesis process, based on a phase-transfer and separation mechanism, allows the control of properties such as particle size and shape in low dispersity by bonding the surfactant oleic acid to the crystal surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly crystalline and nearly monodisperse In2O3 nanocrystals with both cube and flower shapes were successfully synthesized in one step through a facile aqueous solvothermal method for the first time, free of any surfactant or template. X-ray diffraction (XRD), transmission electron microscopy (TEM), selective area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the samples. In our work, the use of diethylene glycol (DEG) is a crucial factor for the formation of the In2O3 phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MF2 (M = Ca, Sr, Ba) nanocrystals (NCs) were synthesized via a solvothermal process in the presence of oleic acid and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, UV/vis absorption spectra, photoluminescence (PL) excitation and emission spectra, and lifetimes, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the MF2 NCs. The as-prepared CaF2, SrF2 and BaF2 NCs present morphologies of truncated octahedron, cube and sheet in a narrow distribution, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Well-dispersed YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) nanocrystals with uniform morphology and size have been synthesized via a facile solvothermal route. XRD results demonstrate that all of the three samples can be well indexed to the pure tetragonal phase Of YVO4, indicating that the Eu3+, Dy3+, and Sm3+ have been effectively doped into the host lattices of YVO4. TEM images show that the YVO4 nanocrystals exhibit ellipsoid shape and a mean size of about 20 nm, which is in good agreement with the estimation of XRD results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium hydroxyapatite (Sr-5(PO4)(3)OH, SrHAp) microspheres with 3D architectures have been successfully prepared through a efficient and facile solvothermal process. The experimental results indicate that the SrHAP microspheres are composed of a large amount of nanosheets, which are assembled in a radial form from the center to the surface of the microspheres. The as-obtained SrHAp samples show an intense and bright blue emission from 350 to 570 nm centered at 427 nm (CIE coordinates: x = 0.153, y = 0.081; lifetime: 9.2 ns; quantum efficiency: 31%) under long-wavelength UV light excitation (344 nm). This blue emission might result from the CO2 center dot- radical impurities in the crystal lattice. Furthermore, the surfactants CTAB and trisodium citrate have an obvious impact on the morphologies and the luminescence properties of the products, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex metal fluoride NaMgF3 nanocrystals were successfully synthesized via a solvothermal method at a relatively low temperature with the presence of oleic acid, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, photoluminescence (PL) excitation and emission spectra, respectively. fit the synthetic process, oleic acid as a Surfactant played a Crucial role in confining the growth and solubility of the NaMgF3 nanocrystals. The as-prepared NaMgF3 nanocrystals have quasi-spherical shape with a narrow distribution. A possible formation mechanism of the nanocrystals was proposed based on the effect of oleic acid. The as-prepared NaMgF3 nanocrystals are highly crystalline and well-dispersed in cyclohexane to form stable and clear colloidal Solutions, which demonstrate a strong emission band centered at 400 nm in photoluminescence (PL) spectra compared with the cyclohexane solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare-earth ions (Eu3+, Tb3+) doped AMoO(4) (A = Sr, Ba) particles with uniform morphologies were successfully prepared through a facile solvothermal process using ethylene glycol (EG) as protecting agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are of high purity and crystallinity and assigned to the tetragonal scheelite-type structure of the AMoO(4) phase. It has been shown that the as-synthesized SrMoO4:Ln and BaMoO4:Ln samples show respective uniform pea nut-like and oval morphologies with narrowsize distribution. The possible growth process of the AMoO(4):Ln has been investigated in detail. The EG/H2O volume ratio, reaction temperature and time have obvious effect on themorphologies and sizes of the as-synthesized products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monodisperse rare-earth ion (Eu3+, Ce3+, Tb3+) doped LaPO4 particles with oval morphology were successfully prepared through a facile solvothermal process without further hear treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are well crystalline at 180 degrees C and assigned to the monoclinic monazite-type structure of the LaPO4 phase. It has been shown that all the as-synthesized samples show perfectly oval morphology with narrow size distribution. The possible growth mechanism of the LapO(4):Ln has been investigated as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a solvothermal route to the synthesis of SrF2 hierarchical flowerlike structures based on thermal decomposition of single source precursor (SSP) of strontium trifluoroacetate in benzylamine solvent. These flowerlike superstructures are actually composed of numerous aggregated nanoplates, and the growth process involves the initial formation of spherical nanoparticles and subsequent transformation into nanoplates. which aggregated together to form microdisks and finally flowerlike superstructures. The results demonstrate the important role of benzylamine in the formation of well-defined SrF2 superstructures, not only providing size and shape control to form nanoplates but also contributing to the self-assembly behavior of nanoplates to build into flower-like superstructures. Additionally, the photoluminescence properties of the obtained SrF2 superstructures are studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Y2O3 : Eu3+ microspheres, with an average diameter of 3 mu m, were successfully prepared through a large-scale and facile solvothermal method followed by a subsequent heat treatment. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, inductive coupled plasma atomic absorption spectrometric analysis, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra, as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. These microspheres were actually composed of randomly aggregated nanoparticles. The formation mechanisms for the Y2O3 : Eu3+ microspheres have been proposed on an isotropic growth mechanism. The Y2O3 : Eu3+ microspheres show a strong red emission corresponding to D-5(0) -> F-7(2) transition (610 nm) of Eu3+ under ultraviolet excitation (259 nm) and low-voltage electron beams excitation (1-5 kV), which have potential applications in fluorescent lamps and field emission displays.