980 resultados para SOLID POLYMER ELECTROLYTES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposite solid polymer electrolytes (NCSPEs) with conducting species other than Li ions are being investigated for solid-state battery applications. Pristine solid polymer electrolytes (SPEs) do not show ionic conductivity suitable for batteries. Addition of inert fillers to SPEs is known to enhance the ionic conductivity. In this paper, we present the role of silica nanoparticles in enhancing the ionic conductivity in NCSPEs with sodium as conducting species. Sodium bromide is complexed with the host polyethylene glycol polymer by solution cast method and silica nanoparticles (SiO2, average particle size 7 nm) are incorporated into the complex in small amounts. The composites are characterized by powder XRD and IR spectroscopy. Conductivity measurements are undertaken as a function of concentration of salt and also as a function of temperature using impedance spectroscopy. Addition of silica nanoparticles shows an enhancement in conductivity by 1-2 orders of magnitude. The results are discussed in terms of interaction of nanoparticles with the nonconducting anions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three comb polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 were synthesized and characterized, and the ionic conductivity of CP/salt complexes is reported. The conductivity of these complexes was about 10(-5)-10(-6) S cm(-1) at room temperature. The conductivity, which displayed non-Arrhenius behaviour, was analysed using the Vogel-Tammann-Fulcher equation. The conductivity maxima appear at lower salt concentration, when CP has longer side chains. Infrared (i.r.) was used to study the cation-polymer interaction. I.r. results also indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comb-like polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 have been synthesized and characterized, and complexed with lithium salts to form amorphous polymer electrolytes. CP/salt complexes showed conductivity up to 10(-5)Scm(-1) at room temperature. The temperature dependence of ionic conductivity suggests that the ion transport is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moves to a higher salt concentration as the temperature increases. IR results indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comb-like polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type-O(CH2CH2O)(n)CH3 have been synthesized and characterized, and complexed with LiNO3 to form an amorphous polymer electrolyte. CP/salt complexes showed conductivity up to 10(-5) S/cm at room temperature. The temperature dependence of ionic conductivity suggests that the ion transport is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moves to a higher salt concentration as the temperature increases. IR results also indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FT-IR spectroscopy has been utilized to monitor ion association in plasticized solid polymer electrolytes (SPEs). The SPEs were prepared from a random copolymer of ethylene oxide (EO) and propylene oxide (PO) and the salt lithium trifluoromethanesulfonate (lithium triflate, LiTf). Tetraethylene glycol dimethyl ether (tetraglyme) and N,N‘-dimethylformamide (DMF) were chosen as model plasticizers. Despite having a similar dielectric constant to that of the polymer host, ε ~ 5, the incorporation of tetraglyme into the SPEs resulted in increased ion association. The addition of a higher dielectric constant solvent , DMF, ε = 36.7, resulted in decreased ion association in the SPE. The effects of salt concentration (0.05−1.25 mol dm-3) and temperature (25−100 °C) upon ion association in SPEs were also investigated. At low salt concentrations, ion association was found to increase with temperature, however, at 1.25 mol dm-3 the temperature dependence of ion association was dominated by concentration effects. There appears to be a maximum in the fraction of “free” ions at a LiCF3SO3 concentration of 0.4 mol dm-3, preceded by a minimum at approximately 0.2 mol dm-3, consistent with the molar conductivity behavior previously observed in these electrolytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of the glass transition temperature (Tg) and free volume behaviour of poly(acrylonitrile) (PAN) and PAN/lithium triflate (LiTf), with varying salt composition from 10 to 66 wt% LiTf, were made by positron annihilation lifetime spectroscopy (PALS). Addition of salt from 10 to 45 wt% LiTf resulted in an increase in the mean free volume cavity size at room temperature (r.t.) as measured by the orthoPositronium (oPs) pickoff lifetime, τ3, with little change in relative concentration of free volume sites as measured by oPs pickoff intensity, I3. The region from 45 to 66 wt% salt displayed no variation in relative free volume cavity size and concentration. This salt concentration range (45 wt%<[LiTf]<66 wt%) corresponds to a region of high ionic conductivity of order 10−5 to 10−6 S cm−1 at Tg as measured by PALS. A percolation phenomenon is postulated to describe conduction in this composition region. Salt addition was shown to lower the Tg as measured by PALS; Tg was 115°C for PAN and 85°C for PAN/66 wt% LiTf. The Tg and free volume behaviour of this polymer-in-salt electrolyte (PISE) was compared to a poly(ether urethane)/LiClO4 where the polymer is the major component, i.e. traditional solid polymer electrolyte (SPE). In contrast to the PISE, the Tg of the SPE was shown to increase with increasing salt concentration from 5.3 to 15.9 wt%. The relative free volume cavity size and concentration at r.t. were shown to decrease with increasing salt concentration. Ionic conductivity in this SPE was of order 10−5 S cm−1 at r.t., which is over 60°C above Tg, 10−8 S cm−1 at 25°C above Tg, and conductivity was not measurable at Tg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

23Na and 19F nuclear magnetic resonance spectroscopy is used to investigate the effect of plasticizer addition on ionic structure and mobility in a urethane crosslinked polyether solid polymer electrolyte. The incorporation of dimethyl formamide and propylene carbonate plasticizers in a sodium triflate/polyether system results in an upfield chemical shift for the 23Na resonance consistent with decreased anion-cation association and increased cation-plasticizer interactions. The 19F resonances appears less susceptible to changes in chemical environment with only minor chemical shift changes recorded. Spin lattice relaxation measurements for the 19F nucleus are also reported. Two minima are observed in the relaxation measurements consistent with both an inter and intramolecular relaxation mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preliminary results are presented on the correlation between enhanced solvent mobility and ionic conductivity in plasticized polyether–urethane solid polymer electrolytes using 13C nuclear magnetic resonance spectroscopic spin–lattice relaxation time measurements to probe polymer mobility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent report on the correlation between enhanced polymer mobility and ionic conductivity at room temperature in plasticized polyether-urethane solid polymer electrolytes (Forsyth et al.[1]), has prompted the present investigation. Positron annihilation lifetime spectroscopy (PALS) has been used to study the effect of plasticizer addition on the room temperature free volume characteristics of the crosslinked polyether-urethane. The addition of low molecular weight plasticizers to the polyether-urethane results in a constant or decreasing mean free volume cavity radius, as measured by the orthoPositronium lifetime τ3, and a decreasing relative concentration of free volume cavities as measured by the ortho-Positronium intensity, I3. It is postulated that the plasticizers interrupt polymer-polymer interactions by occupying the inter- and intra-chain free volume. The plasticizer structure influences the polymerplasticizer interactions which affect inter- and intra-chain separation and hence the free volume of the system. The decrease in polymer-polymer interaction and the increase in polymer-plasticizer interaction in turn influence the glass transition temperature behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of low molecular weight solvents such as dimethyl formamide (DMF) and propylene carbonate (PC) to urethane crosslinked polyethers results in enhancement of polymer segmental motion, as determined in this work from polymer 13C spin lattice relaxation measurements (T1) and glass transition temperatures. The formation of salt-polyether complexes results in a decrease in T1, even in the presence of the plasticizer, indicating that the polymer ether molecules are still involved in the alkali metal coordination. In a polymer electrolyte containing 1 mol kg−1 LiClO4 the addition of DMF and PC have significantly different affects on the polymer mobility, although they both enhance the conductivity. The conductivity enhancement therefore is not solely the result of an increased solvent mobility.

Relevância:

100.00% 100.00%

Publicador: