365 resultados para SNR maximisation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional segmented echo planar imaging (3D-EPI) is a promising approach for high-resolution functional magnetic resonance imaging, as it provides an increased signal-to-noise ratio (SNR) at similar temporal resolution to traditional multislice 2D-EPI readouts. Recently, the 3D-EPI technique has become more frequently used and it is important to better understand its implications for fMRI. In this study, the temporal SNR characteristics of 3D-EPI with varying numbers of segments are studied. It is shown that, in humans, the temporal variance increases with the number of segments used to form the EPI acquisition and that for segmented acquisitions, the maximum available temporal SNR is reduced compared to single shot acquisitions. This reduction with increased segmentation is not found in phantom data and thus likely due to physiological processes. When operating in the thermal noise dominated regime, fMRI experiments with a motor task revealed that the 3D variant outperforms the 2D-EPI in terms of temporal SNR and sensitivity to detect activated brain regions. Thus, the theoretical SNR advantage of a segmented 3D-EPI sequence for fMRI only exists in a low SNR situation. However, other advantages of 3D-EPI, such as the application of parallel imaging techniques in two dimensions and the low specific absorption rate requirements, may encourage the use of the 3D-EPI sequence for fMRI in situations with higher SNR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of the multiantenna capacity in the high-SNR regime has hitherto focused on the high-SNR slope (or maximum multiplexing gain), which quantifies the multiplicative increase as function of the number of antennas. This traditional characterization is unable to assess the impact of prominent channel features since, for a majority of channels, the slope equals the minimum of the number of transmit and receive antennas. Furthermore, a characterization based solely on the slope captures only the scaling but it has no notion of the power required for a certain capacity. This paper advocates a more refined characterization whereby, as function of SNRjdB, the high-SNR capacity is expanded as an affine function where the impact of channel features such as antenna correlation, unfaded components, etc, resides in the zero-order term or power offset. The power offset, for which we find insightful closed-form expressions, is shown to play a chief role for SNR levels of practical interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contemporary coronary magnetic resonance angiography techniques suffer from signal-to-noise ratio (SNR) constraints. We propose a method to enhance SNR in gradient echo coronary magnetic resonance angiography by using sensitivity encoding (SENSE). While the use of sensitivity encoding to improve SNR seems counterintuitive, it can be exploited by reducing the number of radiofrequency excitations during the acquisition window while lowering the signal readout bandwidth, therefore improving the radiofrequency receive to radiofrequency transmit duty cycle. Under certain conditions, this leads to improved SNR. The use of sensitivity encoding for improved SNR in three-dimensional coronary magnetic resonance angiography is investigated using numerical simulations and an in vitro and an in vivo study. A maximum 55% SNR enhancement for coronary magnetic resonance angiography was found both in vitro and in vivo, which is well consistent with the numerical simulations. This method is most suitable for spoiled gradient echo coronary magnetic resonance angiography in which a high temporal and spatial resolution is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the average andoutage performance of spatial multiplexing multiple-input multiple-output (MIMO) systems with channel state information at both sides of the link. Such systems result, for example, from exploiting the channel eigenmodes in multiantenna systems. Dueto the complexity of obtaining the exact expression for the average bit error rate (BER) and the outage probability, we deriveapproximations in the high signal-to-noise ratio (SNR) regime assuming an uncorrelated Rayleigh flat-fading channel. Moreexactly, capitalizing on previous work by Wang and Giannakis, the average BER and outage probability versus SNR curves ofspatial multiplexing MIMO systems are characterized in terms of two key parameters: the array gain and the diversity gain. Finally, these results are applied to analyze the performance of a variety of linear MIMO transceiver designs available in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This correspondence addresses the problem of nondata-aidedwaveform estimation for digital communications. Based on the unconditionalmaximum likelihood criterion, the main contribution of this correspondenceis the derivation of a closed-form solution to the waveform estimationproblem in the low signal-to-noise ratio regime. The proposed estimationmethod is based on the second-order statistics of the received signaland a clear link is established between maximum likelihood estimation andcorrelation matching techniques. Compression with the signal-subspace isalso proposed to improve the robustness against the noise and to mitigatethe impact of abnormals or outliers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monomeric tin(II) species SnR2{R = C(SiMe3)2C5H4N-2} reacts with [Os3(H)2(CO)10] in hexane to give [Os3(µ-H)SnR(CO)10]1 quantitatively; 1 is the first formal stannyne complex of the triosmium nucleus, in which the picoline nitrogen is coordinated to the tin atom, and which is itself also reactive, being a potential precursor to high nuclearity SnOs clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we consider beamforming strategies in amplified-and-forward (AF) two-way relay channels, where two terminals and the relay are equipped with multiple antennas. Our aim is to optimize the worse end-to-end signal-to-noise ratio of the two links so that the reliability of both terminals can be guaranteed. We show that the optimization problem can be recast as a generalized fractional programing and be solved by using the Dinkelbach-type procedure combined with semidefinite programming. Simulation results confirm the efficiency of the proposed strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a possible method to calculate sea level variation using geodetic-quality Global Navigate Satellite System (GNSS) receivers. Three antennas are used: two small antennas and a choke ring one, analyzing only Global Positioning System signals. The main goal of the thesis is to test a modified configuration for antenna set up. In particular, measurements obtained tilting one antenna to face the horizon are compared to measurements obtained from antennas looking upward. The location of the experiment is a coastal environment nearby the Onsala Space Observatory in Sweden. Sea level variations are obtained using periodogram analysis of the SNR signal and compared to synthetic gauge generated from two independent tide gauges. The choke ring antenna provides poor result, with an RMS around 6 cm and a correlation coefficients of 0.89. The smaller antennas provide correlation coefficients around 0.93. The antenna pointing upward present an RMS of 4.3 cm and the one pointing the horizon an RMS of 6.7 cm. Notable variation in the statistical parameters is found when modifying the length of the interval analyzed. In particular, doubts are risen on the reliability of certain scattered data. No relation is found between the accuracy of the method and weather conditions. Possible methods to enhance the available data are investigated, and correlation coefficient above 0.97 can be obtained with small antennas when sacrificing data points. Hence, the results provide evidence of the suitability of SNR signal analysis for sea level variation in coastal environment even in the case of adverse weather conditions. In particular, tilted configurations provides comparable result with upward looking geodetic antennas. A SNR signal simulator is also tested to investigate its performance and usability. Various configuration are analyzed in combination with the periodogram procedure used to calculate the height of reflectors. Consistency between the data calculated and those received is found, and the overall accuracy of the height calculation program is found to be around 5 mm for input height below 5 m. The procedure is thus found to be suitable to analyze the data provided by the GNSS antennas at Onsala.