910 resultados para SNOWBALL EARTH


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The efficiency of the climate machine monotonically increases with decreasing solar constant in present climate conditions, whereas the opposite takes place in snowball conditions. Instead, entropy production is monotonically increasing with the solar constant in both branches of climate conditions, and its value is about four times larger in the warm branch than in the corresponding cold state. Finally, the degree of irreversibility of the system, measured as the fraction of excess entropy production due to irreversible heat transport processes, is much higher in the warm climate conditions, with an explosive growth in the upper range of the considered values of solar constants. Whereas in the cold climate regime a dominating role is played by changes in the meridional albedo contrast, in the warm climate regime changes in the intensity of latent heat fluxes are crucial for determining the observed properties. This substantiates the importance of addressing correctly the variations of the hydrological cycle in a changing climate. An interpretation of the climate transitions at the tipping points based upon macro-scale thermodynamic properties is also proposed. Our results support the adoption of a new generation of diagnostic tools based on the second law of thermodynamics for auditing climate models and outline a set of parametrizations to be used in conceptual and intermediate-complexity models or for the reconstruction of the past climate conditions. Copyright © 2010 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The end of the Neoproterozoic era is punctuated by two global glacial events marked by the presence of glacial deposits overlaid by cap carbonates. Duration of glacial intervals is now consistently constrained to 3-12 million years but the duration of the post-glacial transition is more controversial due to the uncertainty in cap dolostone sedimentation rates. Indeed, the presence of several stratabound magnetic reversals in Brazilian cap dolostones recently questioned the short sedimentation duration (a few thousand years at most) that was initially suggested for these rocks. Here, we present new detailed magnetostratigraphic data of the Mirassol d`Oeste cap dolostones (Mato Grosso, Brazil) and ""bomb-spike"" calibrated AMS (14)C data of microbial mats from the Lagoa Vermelha (Rio de Janeiro, Brazil). We also compile sedimentary, isotopic and microbiological data from post-Marinoan outcrops and/or recent depositional analogues in order to discuss the deposition rate of Marinoan cap dolostones and to infer an estimation of the deglaciation duration in the snowball Earth aftermath. Taken together, the various data point to a sedimentation duration in the range of a few 10(5) years. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO(2)) during glaciation(1). High partial pressures of atmospheric CO(2) (p(CO2); from 20,000 to 90,000 p. p. m. v.) in the aftermath of the Marinoan glaciation (similar to 635 Myr ago) have been inferred from both boron and triple oxygen isotopes(2,3). These p(CO2) values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise(1). The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units(4-8), provide p(CO2) estimates lower than 3,200 p. p. m. v.-and possibly as low as the current value of similar to 400 p. p. m. v. Our new constraint, and our reinterpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geological, geophysical, and geochemical data support a theory that Earth experienced several intervals of intense, global glaciation (“snowball Earth” conditions) during Precambrian time. This snowball model predicts that postglacial, greenhouse-induced warming would lead to the deposition of banded iron formations and cap carbonates. Although global glaciation would have drastically curtailed biological productivity, melting of the oceanic ice would also have induced a cyanobacterial bloom, leading to an oxygen spike in the euphotic zone and to the oxidative precipitation of iron and manganese. A Paleoproterozoic snowball Earth at 2.4 Giga-annum before present (Ga) immediately precedes the Kalahari Manganese Field in southern Africa, suggesting that this rapid and massive change in global climate was responsible for its deposition. As large quantities of O2 are needed to precipitate this Mn, photosystem II and oxygen radical protection mechanisms must have evolved before 2.4 Ga. This geochemical event may have triggered a compensatory evolutionary branching in the Fe/Mn superoxide dismutase enzyme, providing a Paleoproterozoic calibration point for studies of molecular evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the Snowball Earth events of the Neoproterozoic, tropical regions of the ocean could have developed a precipitated salt lag deposit left behind by sublimating sea ice. The major salt would have been hydrohalite, NaCl•2H2O. The crystals in such a deposit can be small and highly scattering, resulting in an allwave albedo similar to that of snow. The snow-free sea ice from which such a crust could develop has a lower albedo, around 0.5, so the development of a crust would substantially increase the albedo of tropical regions on Snowball Earth. Hydrohalite crystals are much less absorptive than ice in the near- infrared part of the solar spectrum, so their presence at the surface would increase the overall albedo as well as altering its spectral distribution. In this paper, we use laboratory measurements of the spectral albedo of a hydrohalite lag deposit, in combination with a radiative transfer model, to infer the inherent optical properties of hydrohalite as functions of wavelength. Using this result, we model mixtures of hydrohalite and ice representing both artificially created surfaces in the laboratory and surfaces relevant to Snowball Earth. The model is tested against sequences of laboratory measurements taken during the formation and the dissolution of a lag deposit of hydrohalite. We present a parameterization for the broadband albedo of cold, sublimating sea ice as it forms and evolves a hydrohalite crust, for use in climate models of Snowball Earth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectral albedo was measured along a 6 km transect near the Allan Hills in East Antarctica. The transect traversed the sequence from new snow through old snow, firn, and white ice, to blue ice, showing a systematic progression of decreasing albedo at all wavelengths, as well as decreasing specific surface area (SSA) and increasing density. Broadband albedos under clear-sky range from 0.80 for snow to 0.57 for blue ice, and from 0.87 to 0.65 under cloud. Both air bubbles and cracks scatter sunlight; their contributions to SSA were determined by microcomputed tomography on core samples of the ice. Although albedo is governed primarily by the SSA (and secondarily by the shape) of bubbles or snow grains, albedo also correlates highly with porosity, which, as a proxy variable, would be easier for ice sheet models to predict than bubble sizes. Albedo parameterizations are therefore developed as a function of density for three broad wavelength bands commonly used in general circulation models: visible, near-infrared, and total solar. Relevance to Snowball Earth events derives from the likelihood that sublimation of equatorward-flowing sea glaciers during those events progressively exposed the same sequence of surface materials that we measured at Allan Hills, with our short 6 km transect representing a transect across many degrees of latitude on the Snowball ocean. At the equator of Snowball Earth, climate models predict thick ice, or thin ice, or open water, depending largely on their albedo parameterizations; our measured albedos appear to be within the range that favors ice hundreds of meters thick. Citation:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Where photosynthetic eukaryotic organisms survived during the Snowball Earth events of the Neoproterozoic remains unclear. Our previous research tested whether a narrow arm of the ocean, similar to the modern Red Sea, could have been a refugium for photosynthetic eukaryotes during the Snowball Earth. Using an analytical ice-flow model, we demonstrated that a limited range of climate conditions could restrict sea-glacier flow sufficiently to allow an arm of the sea to remain partially free from sea-glacier penetration, a necessary condition for it to act as a refugium. Here we expand on the previous study, using a numerical ice-flow model, with the ability to capture additional physics, to calculate sea-glacier penetration, and to explore the effect of a channel with a narrow entrance. The climatic conditions are made selfconsistent by linking sublimation rate to surface temperature. As expected, the narrow entrance allows parts of the nearly enclosed sea to remain safe from sea-glacier penetration for a wider range of climate conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When NaCl precipitates out of a saturated solution, it forms anhydrous crystals of halite at temperatures above +0.11?C, but at temperatures below this threshold it instead precipitates as the dihydrate ‘‘hydrohalite,’’ NaCl * 2H2O. When sea ice is cooled, hydrohalite begins to precipitate within brine inclusions at about -23C. In this work, hydrohalite crystals are examined in laboratory experiments: their formation, their shape, and their response to warming and desiccation. Sublimation of a sea ice surface at low temperature leaves a lag deposit of hydrohalite, which has the character of a fine powder. The precipitation of hydrohalite in brine inclusions raises the albedo of sea ice, and the subsequent formation of a surface accumulation further raises the albedo. Although these processes have limited climatic importance on the modern Earth, they would have been important in determining the surface types present in regions of net sublimation on the tropical ocean in the cold phase of a Snowball Earth event. However, brine inclusions in sea ice migrate downward to warmer ice, so whether salt can accumulate on the surface depends on the relative rates of sublimation and migration. The migration rates are measured in a laboratory experiment at temperatures from -2C to -32C; the migration appears to be too slow to prevent formation of a salt crust on Snowball Earth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neoproterozoic glacigenic formations are preserved in the Kimberley region and northwestern Northern Territory of northern Australia. They are distributed in the west Kimberley adjacent to the northern margins of the King Leopold Orogen, the Mt Ramsay area at the junction of the King Leopold and Halls Creek Orogens, and the east Kimberley, adjacent to the eastern margin of the Halls Creek Orogen. Small outlier glacigenic deposits are preserved in the Litchfield Province, Northern Territory (Uniya Formation) and Georgina Basin, western Queensland (Little Burke Formation). Glacigenic strata comprise diamictite, conglomerate, sandstone and pebbly mudstone and characterize the Walsh, Landrigan and Fargoo/Moonlight Valley formations. Thin units of laminated dolomite sit conformably at the top of the Walsh, Landrigan and Moonlight Valley formations. Glacigenic units are also interbedded with the carbonate platform deposits of the Egan Formation and Boonall Dolomite. δ13C data are available for all carbonate units. There is no direct chronological constraint on these successions. Dispute over regional correlation of the Neoproterozoic succession has been largely resolved through biostratigraphic, chemostratigraphic and lithostratigraphic analysis. However, palaeomagnetic results from the Walsh Formation are inconsistent with sedimentologically based correlations. Two stratigraphically defined glaciations are preserved in northwestern Australia: the ‘Landrigan Glaciation’, characterized by southwest-directed continental ice-sheet movement and correlated with late Cryogenian glaciation elsewhere in Australia and the world; and, the ‘Egan Glaciation’, a more localized glaciation of the Ediacaran Period. Future research focus should include chronology, palaeomagnetic constraint and tectonostratigraphic controls on deposition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sponges (phylum Porifera) had been considered as an enigmatic phylum, prior to the analysis of their genetic repertoire/tool kit. Already with the isolation of the first adhesion molecule, galectin, it became clear that the sequences of sponge cell surface receptors and of molecules forming the intracellular signal transduction pathways triggered by them, share high similarity with those identified in other metazoan phyla. These studies demonstrated that all metazoan phyla, including Porifera, originate from one common ancestor, the Urmetazoa. The sponges evolved prior to the Ediacaran-Cambrian boundary (542 million years ago [myr]) during two major "snowball earth events", the Sturtian glaciation (710 to 680 myr) and the Varanger-Marinoan ice ages (605 to 585 myr). During this period the ocean was richer in silica due to the silicate weathering. The oldest sponge fossils (Hexactinellida) have been described from Australia, China and Mongolia and are thought to have existed coeval with the diverse Ediacara fauna. Only little younger are the fossils discovered in the Sansha section in Hunan (Early Cambrian; China). It has been proposed that only the sponges possessed the genetic repertoire to cope with the adverse conditions, e.g. temperature-protection molecules or proteins protecting them against ultraviolet radiation. The skeletal elements of the Hexactinellida (model organisms Monorhaphis chuni and Monorhaphis intermedia or Hyalonema sieboldi) and Demospongiae (models Suberites domuncula and Geodia cydonium), the spicules, are formed enzymatically by the anabolic enzyme silicatein and the catabolic enzyme silicase. Both, the spicules of Hexactinellida and of Demospongiae, comprise a central axial canal and an axial filament which harbors the silicatein. After intracellular formation of the first lamella around the channel and the subsequent extracellular apposition of further lamellae the spicules are completed in a net formed of collagen fibers. The data summarized here substantiate that with the finding of silicatein a new aera in the field of bio/inorganic chemistry started. For the first time strategies could be formulated and experimentally proven that allow the formation/synthesis of inorganic structures by organic molecules. These findings are not only of importance for the further understanding of basic pathways in the body plan formation of sponges but also of eminent importance for applied/commercial processes in a sustainable use of biomolecules for novel bio/inorganic materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The question of climate at high obliquity is raised in the context of both exoplanet studies (e.g. habitability) and paleoclimates studies (evidence for low-latitude glaciation during the Neoproterozoic and the ”Snowball Earth” hypothesis). States of high obliquity, φ, are distinctive in that, for φ ≥54◦, the poles receive more solar radiation in the annual mean than the Equator, opposite to the present day situation. In addition, the seasonal cycle of insolation is extreme, with the poles alternatively “facing” the sun and sheltering in the dark for months. The novelty of our approach is to consider the role of a dynamical ocean in controlling the surface climate at high obliquity, which in turn requires understanding of the surface winds patterns when temperature gradients are reversed. To address these questions, a coupled ocean-atmosphere-sea ice GCM configured on an aquaplanet is employed. Except for the absence of topography and modified obliquity, the set-up is Earth-like. Two large obliquities φ, 54◦ and 90◦, are compared to today’s Earth value, φ=23.5◦. Three key results emerge at high obliquity: 1) despite reversed temper- ature gradients, mid-latitudes surface winds are westerly and trade winds exist at the equator (as for φ=23.5◦) although the westerlies are confined to the summer hemisphere, 2) a habitable planet is possible with mid-latitude temperatures in the range 300-280 K and 3) a stable climate state with an ice cap limited to the equatorial region is unlikely. We clarify the dynamics behind these features (notably by an analysis of the potential vorticity structure and conditions for baroclinic instability of the atmosphere). Interestingly, we find that the absence of a stable partially glaciated state is critically linked to the absence of ocean heat transport during winter, a feature ultimately traced back to the high seasonality of baroclinic instability conditions in the atmosphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Severe climate changes culminating in at least three major glacial events have been recognized in the Neoproterozoic sedimentary record from many parts of the world Supportive to the global nature of these climatic shifts a considerable amount of data have been acquired from deposits exposed in Pan-African orogenic belts in southwestern and western Africa By comparison published data from the Pan-African belts in Central Africa are scarce We report here evidence of possibly two glacial events recorded in the Mintom Formation that is located on the margin of the Pan-African orogenic Yaounde belt in South-East Cameroon In the absence of reliable radiometric data only maximum and minimum age limits of 640 and 580 Ma respectively can at present be applied to the Mintom Formation The formation consists of two lithostratigraphic ensembles each subdivided in two members (i e in ascending stratigraphic order the Kol Metou Momibole and Atog Adjap Members) The basal ensemble exhibits a typical glacial to post-glacial succession It includes diamictites comprising cobbles and boulders in a massive argillaceous siltstone matrix and laminated siltstones followed by in sharp contact a 2 m-thick massive dolostone that yielded negative delta(13)C values (<-3 parts per thousand. V-PDB) similar to those reported for Marinoan cap carbonates elsewhere However uncertainty remains regarding the glacial influence on the siliciclastic facies because the diamictite is better explained as a mass-flow deposit and diagnostic features such as dropstones have not been seen in the overlying siltstones The Mintom Formation may thus provide an example of an unusual succession of non-glacial diamictite overlain by a truly glacial melt-related cap-carbonate We also report the recent discovery of ice-striated pavements on the structural surface cut in the Mintom Formation suggesting that glaciers developed after the latter had been deposited and deformed during the Pan-African orogeny Striations which consistently exhibit two principal orientations (N60 and N110) were identified in two different localities in the west of the study area on siltstones of the Kol Member and in the east on limestones of the Atog Adjap Member respectively N60-oriented striae indicate ice flow towards the WSW Assigning an age to these features remains problematical because they were not found associated with glaciogenic deposits Two hypotheses can equally be envisaged e either the striated surfaces are correlated (1) to the Gaskiers (or Neoproterozoic post-Gaskiers) glaciation and represent the youngest Ediacaran glacial event documented in the southern Yaounde belt or (2) to the Late Ordovician Hirnantian (Saharan) glaciation thereby providing new data about Hirnantian ice flows in Central Africa (C) 2010 Elsevier Ltd All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the main questions on Neoproterozoic geology regards the extent and dynamics of the glacial systems that are recorded in all continents. We present evidence for short transport distances and localized sediment sources for the Bebedouro Formation, which records Neoproterozoic glaciomarine sedimentation in the central-eastern Sao Francisco Craton (SFC), Brazil. New data are presented on clast composition, based on point counting in thin section and SHRIMP dating of pebbles and detrital zircon. Cluster analysis of clast compositional data revealed a pronounced spatial variability of clast composition on diamictite indicating the presence of individual glaciers or ice streams feeding the basin. Detrital zircon ages reveal distinct populations of Archean and Palaeoproterozoic age. The youngest detrital zircon dated at 874 +/- 9 Ma constrains the maximum depositional age of these diamictites. We interpret the provenance of the glacial diamictites to be restricted to sources inside the SFC, suggesting deposition in an environment similar to ice streams from modern, high latitude glaciers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Jacadigo Group contains one of the largest sedimentary iron and associated manganese deposits of the Neoproterozoic. Despite its great relevance, no detailed sedimentological study concerning the unit has been carried out to date. Here we present detailed sedimentological data and interpretation on depositional systems, system tracts, external controls on basin evolution, basin configuration and regional tectonic setting of the Jacadigo Basin. Six depositional systems were recognized: (I) an alluvial fan system; (II) a siliciclastic lacustrine system; (III) a fan-delta system; (IV) a bedload-dominated river system; (V) an iron formation-dominated lacustrine or marine gulf system; and (VI) a rimmed carbonate platform system. The interpreted depositional systems are related to three tectonic system tracts. The first four depositional systems are mainly made of continental siliciclastics and refer to the rift initiation to early rift climax stage; the lake/gulf system corresponds to the mid to late rift climax stage and the carbonate platform represents the immediate to late post rift stage (Bocaina Formation deposits of the Ediacaran fossil-bearing Corumba Group). The spatial distribution of the depositional systems and associated paleocurrent patterns indicate a WNW-ESE orientation of the master fault zone related to the formation of the Jacadigo Basin. Thus, the iron formations of the Jacadigo Group were deposited in a starved waterbody related to maximum fault displacement and accommodation rates in a restricted continental rift basin. The Fe-Si-Mn source was probably related to hydrothermal plume activity that reached the basin through the fault system during maximum fault displacement phases. Our results also suggest a restricted tectono-sedimentary setting for the type section of the Puga Formation. The Jacadigo Group and the Puga Formation, usually interpreted as glacial deposits, are readdressed here as basin margin gravitational deposits with no necessary relation to glacial processes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ca isotopic compositions of Marinoan post-glacial carbonate successions in Brazil and NW Canada were measured Both basal dolostones display delta(44/40)Ca values between 1 and 0 7 parts per thousand overlying limestones show a negative Ca isotope excursion to values around 0 1 parts per thousand and delta(44/40)Ca values rapidly increase up-section to near 2 0 parts per thousand In the Brazilian successions those high delta(44/40)Ca values rapidly decrease and stabilize to values between 0 6 and 0 9 parts per thousand These Ca isotope secular variation trends are unlike those of Sturtian post-glacial carbonate successions but similar to those of Marinoan post-glacial carbonate successions in Namibia suggesting that the perturbation of the marine Ca cycle was global This recommends Ca isotope stratigraphy as a tool to correlate Neoproterozoic post-glacial carbonate successions worldwide While the lowermost and uppermost strata have delta(44/40)Ca values typical of Phanerozoic carbonates the extremes 0 1 and 2 0 parts per thousand have not been thus far reported for other marine carbonates These extreme values suggest a short-lived non-actualistic perturbation in the marine Ca cycle Simple box modelling of the Marinoan post-glacial marine Ca cycle can reproduce the extreme values only by postulating a two-step process with Ca input initially exceeding Ca removal trough carbonate precipitation followed by precipitation overtaking a decreased Ca Input (C) 2010 Elsevier B V All rights reserved