711 resultados para SMOOTHING SPLINES
Resumo:
Smoothing splines are a popular approach for non-parametric regression problems. We use periodic smoothing splines to fit a periodic signal plus noise model to data for which we assume there are underlying circadian patterns. In the smoothing spline methodology, choosing an appropriate smoothness parameter is an important step in practice. In this paper, we draw a connection between smoothing splines and REACT estimators that provides motivation for the creation of criteria for choosing the smoothness parameter. The new criteria are compared to three existing methods, namely cross-validation, generalized cross-validation, and generalization of maximum likelihood criteria, by a Monte Carlo simulation and by an application to the study of circadian patterns. For most of the situations presented in the simulations, including the practical example, the new criteria out-perform the three existing criteria.
Resumo:
The paper examines whether there was an excess of deaths and the relative role of temperature and ozone in a heatwave during 7–26 February 2004 in Brisbane, Australia, a subtropical city accustomed to warm weather. The data on daily counts of deaths from cardiovascular disease and non-external causes, meteorological conditions, and air pollution in Brisbane from 1 January 2001 to 31 October 2004 were supplied by the Australian Bureau of Statistics, Australian Bureau of Meteorology, and Queensland Environmental Protection Agency, respectively. The relationship between temperature and mortality was analysed using a Poisson time series regression model with smoothing splines to control for nonlinear effects of confounding factors. The highest temperature recorded in the 2004 heatwave was 42°C compared with the highest recorded temperature of 34°C during the same periods of 2001–2003. There was a significant relationship between exposure to heat and excess deaths in the 2004 heatwave estimated increase in non-external deaths: 75 [(95% confidence interval, CI: 11–138; cardiovascular deaths: 41 (95% CI: −2 to 84)]. There was no apparent evidence of substantial short-term mortality displacement. The excess deaths were mainly attributed to temperature but exposure to ozone also contributed to these deaths.
Resumo:
In many designed experiments with animals liveweight is recorded several times during the trial. Such data are commonly referred to as repeated measures data. An aim of such experiments is generally to compare the growth patterns for the applied treatments. This paper discusses some of the methods of analysing repeated measures data and illustrates the use of cubic smoothing splines to describe irregular cattle growth data. Animal production for a consuming world : proceedings of 9th Congress of the Asian-Australasian Association of Animal Production Societies [AAAP] and 23rd Biennial Conference of the Australian Society of Animal Production [ASAP] and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, [DRF]. 2-7 July 2000, Sydney, Australia.
Resumo:
In this paper we extend partial linear models with normal errors to Student-t errors Penalized likelihood equations are applied to derive the maximum likelihood estimates which appear to be robust against outlying observations in the sense of the Mahalanobis distance In order to study the sensitivity of the penalized estimates under some usual perturbation schemes in the model or data the local influence curvatures are derived and some diagnostic graphics are proposed A motivating example preliminary analyzed under normal errors is reanalyzed under Student-t errors The local influence approach is used to compare the sensitivity of the model estimates (C) 2010 Elsevier B V All rights reserved
Resumo:
In this paper we propose methods for smooth hazard estimation of a time variable where that variable is interval censored. These methods allow one to model the transformed hazard in terms of either smooth (smoothing splines) or linear functions of time and other relevant time varying predictor variables. We illustrate the use of this method on a dataset of hemophiliacs where the outcome, time to seroconversion for HIV, is interval censored and left-truncated.
Resumo:
[EN]In this work we develop a procedure to deform a given surface triangulation to obtain its alignment with interior curves. These curves are defined by splines in a parametric space and, subsequently, mapped to the surface triangulation. We have restricted our study to orthogonal mapping, so we require the curves to be included in a patch of the surface that can be orthogonally projected onto a plane (our parametric space). For example, the curves can represent interfaces between different materials or boundary conditions, internal boundaries or feature lines. Another setting in which this procedure can be used is the adaption of a reference mesh to changing curves in the course of an evolutionary process...
Resumo:
This paper proposes a numerically simple routine for locally adaptive smoothing. The locally heterogeneous regression function is modelled as a penalized spline with a smoothly varying smoothing parameter modelled as another penalized spline. This is being formulated as hierarchical mixed model, with spline coe±cients following a normal distribution, which by itself has a smooth structure over the variances. The modelling exercise is in line with Baladandayuthapani, Mallick & Carroll (2005) or Crainiceanu, Ruppert & Carroll (2006). But in contrast to these papers Laplace's method is used for estimation based on the marginal likelihood. This is numerically simple and fast and provides satisfactory results quickly. We also extend the idea to spatial smoothing and smoothing in the presence of non normal response.
Resumo:
The thrust of this report concerns spline theory and some of the background to spline theory and follows the development in (Wahba, 1991). We also review methods for determining hyper-parameters, such as the smoothing parameter, by Generalised Cross Validation. Splines have an advantage over Gaussian Process based procedures in that we can readily impose atmospherically sensible smoothness constraints and maintain computational efficiency. Vector splines enable us to penalise gradients of vorticity and divergence in wind fields. Two similar techniques are summarised and improvements based on robust error functions and restricted numbers of basis functions given. A final, brief discussion of the application of vector splines to the problem of scatterometer data assimilation highlights the problems of ambiguous solutions.
Resumo:
A new method for estimating the time to colonization of Methicillin-resistant Staphylococcus Aureus (MRSA) patients is developed in this paper. The time to colonization of MRSA is modelled using a Bayesian smoothing approach for the hazard function. There are two prior models discussed in this paper: the first difference prior and the second difference prior. The second difference prior model gives smoother estimates of the hazard functions and, when applied to data from an intensive care unit (ICU), clearly shows increasing hazard up to day 13, then a decreasing hazard. The results clearly demonstrate that the hazard is not constant and provide a useful quantification of the effect of length of stay on the risk of MRSA colonization which provides useful insight.
The Optimal Smoothing of the Wigner-Ville Distribution for Real-Life Signals Time-Frequency Analysis
Resumo:
Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a Gaussian field with Matern correlation function. We investigate how changes in grid cell size affect model outcomes under different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be applied for different patterns of point data.
Resumo:
In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite robustness in terms change of the hyperparamaters. The spatial correlations are appeared in both intercepts and slopes.
Resumo:
A method is proposed to describe force or compound muscle action potential (CMAP) trace data collected in an electromyography study for motor unit number estimation (MUNE). Experimental data was collected using incre- mental stimulation at multiple durations. However, stimulus information, vital for alternate MUNE methods, is not comparable for multiple duration data and therefore previous methods of MUNE (Ridall et al., 2006, 2007) cannot be used with any reliability. Hypothesised ring combinations of motor units are mod- elled using a multiplicative factor and Bayesian P-spline formulation. The model describes the process for force and CMAP in a meaningful way.