897 resultados para SLEEP DEPRIVATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

While conventional antidepressants benefit many patients with major depressive disorder (MDD), as much as eight to 12 weeks can elapse before significant improvements in depressive symptoms are seen. Treatments that act more rapidly in MDD are urgently needed. Sleep deprivation (SD) has been shown to produce a rapid antidepressant response within one day in 50-60% of patients with MDD; thus, identifying its antidepressant mechanism may contribute to the development of antidepressants that act more rapidly. The present study evaluated the effects of 39 h of SD on mood, as well as on plasma levels of brain derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in patients with MDD. After a drug-free period of at least two weeks, 11 patients (6 males, 5 females; ages 25-62) who met DSM-IV criteria for MDD underwent total SD. Plasma samples for BDNF and VEGF assays were collected on Days 1 (baseline) and 2. The six-item Hamilton Rating Scale for Depression (HAMD-6) was the primary outcome measure. HAMD-6 scores decreased significantly after SD (Day 2). SD was negatively correlated with change in HAMD-6 score and change in VEGF levels, indicating that as depression scores decreased following SD, VEGF plasma levels increased. In contrast, SD did not alter plasma BDNF concentrations, nor was an association found between BDNF levels and clinical improvement on the HAMD-6. These results suggest that SD is associated with mood-related changes in plasma VEGF levels, but not plasma BDNF levels. Further studies using larger sample sizes are needed to confirm these preliminary findings. Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult mammalian brains continuously generate new neurons, a phenomenon called adult neurogenesis. Both environmental stimuli and endogenous factors are important regulators of adult neurogenesis. Sleep has an important role in normal brain physiology and its disturbance causes very stressful conditions, which disrupt normal brain physiology. Recently, an influence of sleep in adult neurogenesis has been established, mainly based on sleep deprivation studies. This review provides an overview on how rhythms and sleep cycles regulate hippocampal and subventricular zone neurogenesis, discussing some potential underlying mechanisms. In addition, our review highlights some interacting points between sleep and adult neurogenesis in brain function, such as learning, memory, and mood states, and provides some insights on the effects of antidepressants and hypnotic drugs on adult neurogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: Sleep deprivation (SD) is strongly associated with elevated risk for cardiovascular disease. Objective: To determine the effect of SD on basal hemodynamic functions and tolerance to myocardial ischemia-reperfusion (IR) injury in male rats. Method: SD was induced by using the flowerpot method for 4 days. Isolated hearts were perfused with Langendorff setup, and the following parameters were measured at baseline and after IR: left ventricular developed pressure (LVDP); heart rate (HR); and the maximum rate of increase and decrease of left ventricular pressure (±dp/dt). Heart NOx level, infarct size and coronary flow CK-MB and LDH were measured after IR. Systolic blood pressure (SBP) was measured at start and end of study. Results: In the SD group, the baseline levels of LVDP (19%), +dp/dt (18%), and -dp/dt (21%) were significantly (p < 0.05) lower, and HR (32%) was significantly higher compared to the controls. After ischemia, hearts from SD group displayed a significant increase in HR together with a low hemodynamic function recovery compared to the controls. In the SD group, NOx level in heart, coronary flow CK-MB and LDH and infarct size significantly increased after IR; also SD rats had higher SBP after 4 days. Conclusion: Hearts from SD rats had lower basal cardiac function and less tolerance to IR injury, which may be linked to an increase in NO production following IR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several pieces of evidence suggest that sleep deprivation causes marked alterations in neurotransmitter receptor function in diverse neuronal cell types. To date, this has been studied mainly in wake- and sleep-promoting areas of the brain and in the hippocampus, which is implicated in learning and memory. This article reviews findings linking sleep deprivation to modifications in neurotransmitter receptor function, including changes in receptor subunit expression, ligand affinity and signal transduction mechanisms. We focus on studies using sleep deprivation procedures that control for side-effects such as stress. We classify the changes with respect to their functional consequences on the activity of wake-promoting and/or sleep-promoting systems. We suggest that elucidation of how sleep deprivation affects neurotransmitter receptor function will provide functional insight into the detrimental effects of sleep loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrocytes play a key role in the neurometabolic coupling through the glycogen metabolism and the ''Astrocyte-Neuron Lactate Shuttle'' (ANLS). We previously reported that brain glycogen metabolism was affected by sleep deprivation (SD). Therefore, it is of prime interest to determine if a similar sleep loss also affects the ANLS functioning in astrocytes. To address this issue, we sleep deprived transgenic mice expressing the GFP under the control of the GFAP promoter and in which astrocytes can be isolated by FACS. The levels of expression of genes related to ANLS were assessed by qRT-PCR in the GFP-positive cells (GFPþ). The FVB/NTg( GFAP-GFP)Mes14/j mice were weaned at P20-P21 and underwent an instrumental 6 h SD at P23-P27. The SD was realized using the ''CaResS'' device which has been designed to minimize stress during SD. Control group corresponds to undisturbed mice. At the end of SD, mice were sacrificed and their cerebral cortex was rapidly dissected, cut in small pieces and enzymatically digested. After cell dissociation, GFPþ and GFP- cells were sorted by FACS and treated for RNA extraction. A quantitative RTPCR was realized using specific probes against different genes involved in ANLS. Results indicate that genes encoding the LDHb, the GLT1, the alpha2 subunit of the Na/KATPase pump as well as the GLUT1, were significantly increased in the GFPþ cells from SD mice. No significant change was observed in the GFP- cells from the same group. These results indicate that this approach is suitable to determine the transcriptional signature of SD in glial cells from juvenile animals. They also indicate that sleep loss induces transcriptional changes of genes involved in ANLS specifically in astrocytes. This could suggest that an adaptation of the ANLS at the transcriptional levels exists in pathophysiological conditions where neuronal activity is enhanced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sleep deprivation (SD) results in increased electroencephalographic (EEG) delta power during subsequent non-rapid eye movement sleep (NREMS) and is associated with changes in the expression of circadian clock-related genes in the cerebral cortex. The increase of NREMS delta power as a function of previous wake duration varies among inbred mouse strains. We sought to determine whether SD-dependent changes in circadian clock gene expression parallel this strain difference described previously at the EEG level. The effects of enforced wakefulness of incremental durations of up to 6 h on the expression of circadian clock genes (bmal1, clock, cry1, cry2, csnk1epsilon, npas2, per1, and per2) were assessed in AKR/J, C57BL/6J, and DBA/2J mice, three strains that exhibit distinct EEG responses to SD. Cortical expression of clock genes subsequent to SD was proportional to the increase in delta power that occurs in inbred strains: the strain that exhibits the most robust EEG response to SD (AKR/J) exhibited dramatic increases in expression of bmal1, clock, cry2, csnkIepsilon, and npas2, whereas the strain with the least robust response to SD (DBA/2) exhibited either no change or a decrease in expression of these genes and cry1. The effect of SD on circadian clock gene expression was maintained in mice in which both of the cryptochrome genes were genetically inactivated. cry1 and cry2 appear to be redundant in sleep regulation as elimination of either of these genes did not result in a significant deficit in sleep homeostasis. These data demonstrate transcriptional regulatory correlates to previously described strain differences at the EEG level and raise the possibility that genetic differences underlying circadian clock gene expression may drive the EEG differences among these strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY OBJECTIVES: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. DESIGN: 6-hour instrumental sleep deprivation (TSD). SETTING: Animal sleep research laboratory. PARTICIPANTS: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. INTERVENTIONS: Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. MEASUREMENTS AND RESULTS: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. CONCLUSIONS: This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sleep-wake disturbances are frequently observed in stroke patients and are associated with poorer functional outcome. Until now the effects of sleep on stroke evolution are unknown. The purpose of the present study was to evaluate the effects of three sleep deprivation (SD) protocols on brain damages after focal cerebral ischemia in a rat model. Permanent occlusion of distal branches of the middle cerebral artery was induced in adult rats. The animals were then subjected to 6h SD, 12h SD or sleep disturbances (SDis) in which 3 x 12h sleep deprivation were performed by gentle handling. Infarct size and brain swelling were assessed by Cresyl violet staining, and the number of damaged cells was measured by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Behavioral tests, namely tape removal and cylinder tests, were performed for assessing sensorimotor function. In the 6h SD protocol, no significant difference (P > 0.05) was found either in infarct size (42.5 ± 30.4 mm3 in sleep deprived animals vs. 44.5 ± 20.5 mm3 in controls, mean ± s.d.), in brain swelling (10.2 ± 3.8 % in sleep deprived animals vs. 11.3 ± 2.0 % in controls) or in number of TUNEL-positive cells (21.7 ± 2.0/mm2 in sleep deprived animals vs. 23.0 ± 1.1/mm2 in controls). In contrast, 12h sleep deprivation increased infarct size by 40 % (82.8 ± 10.9 mm3 in SD group vs. 59.2 ± 13.9 mm3 in control group, P = 0.008) and number of TUNEL-positive cells by 137 % (46.8 ± 15/mm in SD group vs. 19.7 ± 7.7/mm2 in control group, P = 0.003). There was no significant difference (P > 0.05) in brain swelling (12.9 ± 6.3 % in sleep deprived animals vs. 11.6 ± 6.0 % in controls). The SDis protocol also increased infarct size by 76 % (3 x 12h SD 58.8 ± 20.4 mm3 vs. no SD 33.8 ± 6.3 mm3, P = 0.017) and number of TUNEL-positive cells by 219 % (32.9 ± 13.2/mm2 vs. 10.3 ± 2.5/mm2, P = 0.008). Brain swelling did not show any difference between the two groups (24.5 ± 8.4 % in SD group vs. 16.7 ± 8.9 % in control group, p > 0.05). Both behavioral tests did not show any concluding results. In summary, we demonstrate that sleep deprivation aggravates brain damages in a rat model of stroke. Further experiments are needed to unveil the mechanisms underlying these effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY OBJECTIVES: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. DESIGN: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. SETTINGS: Mouse sleep-recording facility. PARTICIPANTS: Per2::Luciferase knock-in mice. INTERVENTIONS: N/A. MEASUREMENTS AND RESULTS: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. CONCLUSIONS: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of menopause, hormone therapy (HT) and aging on sleep. Further, the mechanisms behind these effects were examined by studying the associations between sleep and the nocturnal profiles of sleep-related hormones. Crosssectional study protocols were used to evaluate sleep in normal conditions and during recovery from sleep deprivation. The effect of initiation of HT on sleep and sleeprelated hormones was studied in a prospective controlled trial. Young, premenopausal and postmenopausal women were studied, and the methods included polysomnography, 24-h blood sampling, questionnaires and cognitive tests of attention. Postmenopausal women were less satisfied with their sleep quality than premenopausal women, but this was not reflected in sleepiness or attention. The objective sleep quality was mainly similar in pre- and postmenopausal women, but differed from young women. The recovery mechanisms from sleep deprivation were relatively well-preserved after menopause. HT offered no advantage to sleep after sleep deprivation or under normal conditions. The decreased growth hormone (GH) and prolactin (PRL) levels after menopause were reversible with HT. Neither menopause nor HT had any effect on cortisol levels. In premenopausal women, HT had only minor effects on PRL and cortisol levels. The temporal link between GH and slow wave sleep (SWS) was weaker after menopause. PRL levels were temporally associated with sleep stages, and higher levels were seen during SWS and lower during rapid-eye-movement (REM) sleep. Sleep quality after menopause is better determined by age than by menopausal state. Although HT restores the decreased levels of GH and PRL after menopause, it offers no advantage to sleep quality under normal conditions or after sleep deprivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid eye movement (REM) sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase) controls acetylcholine (Ach) availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12). Two additional groups, a home-cage control (N = 6) and a large platform control (N = 6), were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant), membrane-bound (100,000 g pellet) and soluble (100,000 g supernatant) Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet) enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8). There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2). Our results suggest that REM sleep deprivation changes Ach availability at the level of its receptors through a decrease in Achase activity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been proposed that the multiple-platform method (MP) for desynchronized sleep (DS) deprivation eliminates the stress induced by social isolation and by the restriction of locomotion in the single-platform (SP) method. MP, however, induces a higher increase in plasma corticosterone and ACTH levels than SP. Since deprivation is of heuristic value to identify the functional role of this state of sleep, the objective of the present study was to determine the behavioral differences exhibited by rats during sleep deprivation induced by these two methods. All behavioral patterns exhibited by a group of 7 albino male Wistar rats submitted to 4 days of sleep deprivation by the MP method (15 platforms, spaced 150 mm apart) and by 7 other rats submitted to sleep deprivation by the SP method were recorded in order to elaborate an ethogram. The behavioral patterns were quantitated in 10 replications by naive observers using other groups of 7 rats each submitted to the same deprivation schedule. Each quantification session lasted 35 min and the behavioral patterns presented by each rat over a period of 5 min were counted. The results obtained were: a) rats submitted to the MP method changed platforms at a mean rate of 2.62 ± 1.17 platforms h-1 animal-1; b) the number of episodes of noninteractive waking patterns for the MP animals was significantly higher than that for SP animals (1077 vs 768); c) additional episodes of waking patterns (26.9 ± 18.9 episodes/session) were promoted by social interaction in MP animals; d) the cumulative number of sleep episodes observed in the MP test (311) was significantly lower (chi-square test, 1 d.f., P<0.05) than that observed in the SP test (534); e) rats submitted to the MP test did not show the well-known increase in ambulatory activity observed after the end of the SP test; f) comparison of 6 MP and 6 SP rats showed a significantly shorter latency to the onset of DS in MP rats (7.8 ± 4.3 and 29.0 ± 25.0 min, respectively; Student t-test, P<0.05). We conclude that the social interaction occurring in the MP test generates additional stress since it increases the time of forced wakefulness and reduces the time of rest promoted by synchronized sleep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei) are involved in the generation of rapid eye movement (REM) sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase), the enzyme which inactivates acetylcholine (Ach) in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase) are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex) after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1) were assayed photometrically. The results (mean ± SD) obtained showed a statistically significant (Student t-test) increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025) and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05). Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05) and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05) were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity induced by REM sleep deprivation was specific to the pons, a brain region where cholinergic neurons involved in REM generation are located, and also to brain regions which receive cholinergic input from the pons (the thalamus and medulla oblongata). During REM sleep extracellular levels of Ach are higher in the pons, medulla oblongata and thalamus. The increase in Achase activity in these brain areas after REM sleep deprivation suggests a higher rate of Ach turnover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endothelins (ET-1, 2 and 3) constitute a family of 21 amino acid peptides with potent biological activities. ET-1 is one of the most potent endogenous vasoconstrictors so far identified and its increased concentration in plasma appears to be closely related to the pathogenesis of arterial hypertension as well as to obstructive sleep apnea (OSA). OSA patients exhibit repetitive episodes of apnea and hypopnea that result in hypoxia and consecutive arousals. These patients are chronically sleep deprived, which may aggravate the hypertensive features, since literature data show that sleep deprivation results in hypertension both in humans and in animals. Based on the reported relationship between ET-1, hypertension and sleep deprivation consequences, the purpose of the present study was to determine plasma ET concentrations in paradoxical sleep-deprived animals. Male Wistar rats, 3 to 4 months old (N = 10 per group), were deprived of sleep for 24 and 96 h by the platform technique and plasma ET-1/2 was measured by radioimmunoassay. Analysis of plasma revealed that 96 h of sleep deprivation induced a significant increase in ET-1/2 release (6.58 fmol/ml) compared to control (5.07 fmol/ml). These data show that sleep deprivation altered plasma ET-1/2 concentrations, suggesting that such an increase may participate in the genesis of arterial hypertension and cardiorespiratory changes observed after sleep deprivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We sought to examine the possible participation of dopaminergic receptors in the phasic events that occur during rapid eye movement (REM) sleep, known as sawtooth waves (STW). These phasic phenomena of REM sleep exhibit a unique morphology and, although they represent a characteristic feature of REM sleep, little is known about the mechanisms which generate them and which are apparently different from rapid eye movements. STW behavior was studied in 10 male volunteers aged 20 to 35 years, who were submitted to polysomnographic monitoring (PSG). On the adaptation night they were submitted to the first PSG and on the second night, to the basal PSG. On the third night the volunteers received placebo or haloperidol and spent the whole night awake. On the fourth night they were submitted to the third PSG. After a 15-day rest period, the volunteers returned to the sleep laboratory and, according to a double-blind crossover randomized design, received haloperidol or placebo and spent the whole night awake, after which they were submitted to the fourth PSG. The volunteers who were given haloperidol combined with sleep deprivation exhibited an elevation of the duration and density of the STW, without significant alterations of the other REM sleep phasic phenomena such as rapid eye movement. These findings suggest that sawtooth waves must have their own generating mechanisms and that the dopaminergic receptors must exert a modulating role since REM sleep deprivation, as well as administration of neuroleptics, produces supersensitivity of dopaminergic receptors.