103 resultados para SLANT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that a side-fed bifilar helix antenna with a single feed, can generate a slant 451 linearly polarized onmidirectional toroidal pattern. The antenna has a low profile and does not require a ground plane. The bifilar helix antenna provides slant 45 degrees polarization over a solid angle of almost 4 pi steradians as compared to a crossed dipole which generates a tilted 45 degrees linearly, polarized pattern only over a solid angle of 1.14 pi steradians. The computed results are validated by experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple pictures under everyday viewing conditions evoke impressions of surfaces oriented in depth. These impressions have been studied by measuring the slants of perceived surfaces, with probes (rotating arrowheads) designed to respect the distinctive character of depicted scenes. Converging arguments indicated that the perceived orientation of the probes was near theoretical values. A series of experiments showed that subjects formed well-defined impressions of depicted surface orientation. The literature suggests that perceived objects might be flattened', but that was not the general rule. Instead, both mean slant and uncertainty fitted models in which slant estimates are derived in a relatively straightforward way from local relations in the picture. Simplifying pictures tended to make orientation estimates less certain, particularly away from the natural anchor points (vertical and horizontal). The shape of the object affected all aspects of the observed-object/percept relationship. Individual differences were large, and suggest that different individuals used different relationships as a basis for their estimates. Overall, data suggest that everyday picture perception is strongly selective and weakly integrative. In particular, depicted slant is estimated by finding a picture feature which will be strongly related to it if the object contains a particular regularity, not by additive integration of evidence from multiple directly and indirectly relevant sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the sensory consequences of an action are systematically altered our brain can recalibrate the mappings between sensory cues and properties of our environment. This recalibration can be driven by both cue conflicts and altered sensory statistics, but neither mechanism offers a way for cues to be calibrated so they provide accurate information about the world, as sensory cues carry no information as to their own accuracy. Here, we explored whether sensory predictions based on internal physical models could be used to accurately calibrate visual cues to 3D surface slant. Human observers played a 3D kinematic game in which they adjusted the slant of a surface so that a moving ball would bounce off the surface and through a target hoop. In one group, the ball’s bounce was manipulated so that the surface behaved as if it had a different slant to that signaled by visual cues. With experience of this altered bounce, observers recalibrated their perception of slant so that it was more consistent with the assumed laws of kinematics and physical behavior of the surface. In another group, making the ball spin in a way that could physically explain its altered bounce eliminated this pattern of recalibration. Importantly, both groups adjusted their behavior in the kinematic game in the same way, experienced the same set of slants and were not presented with low-level cue conflicts that could drive the recalibration. We conclude that observers use predictive kinematic models to accurately calibrate visual cues to 3D properties of world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite operators are starting to use the Ka-band (30/20 GHz) for communications systems requiring higher traffic capacity. The use of this band is expected to experience a significant growth in the next few years, as several operators have reported plans to launch new satellites with Ka-band capacity. It is worth mentioning the Ka-Sat satellite in Europe, launched in 2010, and ViaSat-1, of 2011, with coverage of USA1. Some other examples can be found in other parts of the World. Recent satellite communications standards, such as DVB-S22 or DVB-RCS3, which provide means to mitigate propagation impairments, have been developed with the objective of improving the use of the Ka-band, in comparison with previous technical standards. In the next years, the ALPHASAT satellite will bring about new opportunities4 for carrying out propagation and telecommunication experiments in the Ka- and Q/V-bands. Commercial uses are focused on the provision of high speed data communications, for Internet access and other applications. In the near future, it is expected that higher and higher data rates will also be needed to broadcast richer multimedia contents, including HD-TV, interactive content or 3D-TV. All of these services may be provided in the future by satellites of the current generation, whose life span can extend up to 2025 in some cases. Depending on local regulations, the available bandwidth for the satellite fixed and broadcasting services in the Ka-band is in excess of several hundred MHz, bidirectional, comprising more than 1 GHz for each sub-band in some cases. In this paper, the results of a propagation experiment that is being carried out at Universidad Politécnica de Madrid (UPM), Spain, are presented5. The objective of the experiment is twofold: gathering experimental time series of attenuation and analyzing them in order to characterize the propagation channel at these frequencies6. The experiment and statistical results correspond to five complete years of measurements. The experiment is described in more detail in Section II. Yearly characteristics of rain attenuation are presented in Section III, whereas Section IV is dedicated to the monthly, seasonal, and hourly characteristics. Section V covers the dynamic characteristics of this propagation effect, just before the conclusions are described in Section VI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 53C40, 53C25.