241 resultados para SLAG
Resumo:
Soil acidity is one of the main limiting factors for the growth of pasture grasses in Brazilian soils. In addition to lime, slag can be used to correct soil acidity and help plants to absorb nutrients in adequate amounts. The objective of this experiment was to evaluate, under greenhouse conditions, the effects of slag and lime plus nitrogen (N) on marandu palisade grass plants` nutritional status as well as the absorption of macronutrients submitted to two cuts. The treatments consisted of two corrective materials (slag and lime), three corrective material rates (0.81, 1.61, and 3.22 g dm-3 of ECaCO3), three N rates (75, 150, and 300 mg dm-3) plus a control treatment, with four replications. Macronutrient contents in the forage plants were found to be present in adequate levels. The mean value of N accumulated in the shoot was 40.1 mg per plant, phosphorus (P) was 4.6 mg per plant, potassium (K) was 38.6 mg per plant, calcium (Ca) was 7.3 mg per plant, magnesium (Mg) was 6.7 mg per plant, and sulfur (S) was 3.5 mg per plant at the first cut. At the second cut, the nutrient accumulations values were N 50.8 mg per plant, P 6.3 mg per plant, K 20.7 mg per plant, Ca 21.6 mg per plant, Mg 24.0 mg per plant, and S 4.7 mg per plant. Macronutrients accumulation in the shoot of grass increased with the addition of both the correctives as well as the N rates.
Resumo:
This paper presents results of laboratory testing of unrestrained drying shrinkage during a period of 154 days of different concrete mixtures from the Brazilian production line that utilize ground granulated blast-furnace slag in their compositions. Three concrete mixtures with water/cement ratio of 0.78(M1), 0.41(M2), and 0.37(M3) were studied. The obtained experimental data were compared with the analytical results from prediction models available in the literature: the ACI 209 model (ACI), the B3 model (B3), the Eurocode 2 model (EC2), the GL 2000 model (GL), and the Brazilian NBR 6118 model (NBR), and an analysis of the efficacy of these models was conducted utilizing these experimental data. In addition, the development of the mechanical properties (compressive strength and modulus of elasticity) of the studied concrete mixtures was also measured in the laboratory until 126 days. From this study, it could be concluded that the ACI and the GL were the models that most approximated the experimental drying shrinkage data measured during the analyzed period of time.
Resumo:
This study focuses on the technical feasibility of the utilization of waste from the cutting of granite to adjust the chemical composition of slag from steelworks LD, targeting the addition of clinker Portland cement. For this, chemical characterization of the waste, its mixture and fusion was performed, obtaining a CaO/SiO(2) relationship of around 0.9 to 1.2 for the steelworks slag. We selected samples of the waste, mixed, melted and cooled in water and in the oven. Samples cooled in water, after examining with X-ray difractrograms, had been predominantly amorphous. For samples cooled in the furnace, which had vitreous, there was the presence of mineralogical phases Akermanita and Gehlenita, which is considered as the ideal stage for the mineral water activity of the slag. The adjustment of the chemical composition of the slag from steel works by the addition of waste granite was efficient, transforming the waste into a product that is the same as blast furnace slag and can be used in the manufacture of cement.
Resumo:
Activated slag cement (ASC) shows significantly higher shrinkage than ordinary Portland cement agglomerates. Cracking generated by shrinkage is one of the most critical drawbacks for broader applications of this promising alternative binder. This article investigates the relationship between ASC hydration, unrestrained drying and autogenous shrinkage of mortar specimens. The chemical and microstructure evolution due to hydration were determined on pastes by thermogravimetric analysis, conduction calorimetry and mercury porosimetry. Samples were prepared with ground blast furnace slag (BFS) activated with sodium silicate (silica modulus of 1.7) with 2.5, 3.5 and 4.5% of Na2O, by slag mass. The amount of activator is the primary influence on drying and autogenous shrinkage, and early hydration makes a considerable contribution to the total result, which increases with the amount of silica. Drying shrinkage occurred in two stages, the first caused by extensive water loss when the samples were exposed to the environment, and the second was associated with the hydration process and less water loss. Due to the refinement of ASC porous system, autogenous shrinkage is responsible for a significant amount of the total shrinkage. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This article reports the characteristics of blast furnace slag (BFS) pastes activated with hydrated lime (5%) and hydrated lime (2%) plus gypsum (6%) in relation to compressive strength, shrinkage (autogenous and drying) and microstructure (porosity, hydrated products). The paste mixtures were characterized using powder X-ray diffraction (XRD), mercury intrusion porosimetry (MIP) and thermogravimetric analysis (TG/DTG). BSF activated with lime and gypsum (LG) results in larger amounts of ettringite when compared with BFS activated with lime (L). Although the porosities of the L and LG mixtures were about the same, there was a greater pore refinement for the BFS activated with lime, with an increase in mesopores volume with age. The presence of ettringite and the higher volumes of macropores cause the compressive strength of BSF activated with hydrated lime plus gypsum to be smaller than that of BFS activated with lime. For both chemical activators, compressive strength developed slowly at early ages. Autogenous and drying shrinkage were greater for the BFS activated with lime, believed to result from the more refined porous structure in comparison with the mixture activated with gypsum plus lime. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An extensive research program focused on the characterization of various metallurgical complex smelting and coal combustion slags is being undertaken. The research combines both experimental and thermodynamic modeling studies. The approach is illustrated by work on the PbO-ZnO-Al2O3-FeO-Fe2O3-CaO-SiO2 system. Experimental measurements of the liquidus and solidus have been undertaken under oxidizing and reducing conditions using equilibration, quenching, and electron probe X-ray microanalysis. The experimental program has been planned so as to obtain data for thermodynamic model development as well as for pseudo-ternary Liquidus diagrams that can be used directly by process operators. Thermodynamic modeling has been carried out using the computer system FACT, which contains thermodynamic databases with over 5000 compounds and evaluated solution models. The FACT package is used for the calculation of multiphase equilibria in multicomponent systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New optimizations have been carried out, which significantly improve the accuracy of the thermodynamic models for lead/zinc smelting and coal combustion processes. Examples of experimentally determined and calculated liquidus diagrams are presented. These examples provide information of direct relevance to various metallurgical smelting and coal combustion processes.
Resumo:
A model has been developed which enables the viscosities of coal ash slags to be predicted as a function of composition and temperature under reducing conditions. The model describes both completely liquid and heterogeneous, i.e. partly crystallised, slags in the Al2O3-CaO-'FeO'-SiO2 system in equilibrium with metallic iron. The Urbain formalism has been modified to describe the viscosities of the liquid slag phase over the complete range of compositions and a wide range of temperatures. The computer package F * A * C * T was used to predict the proportions of solids and the compositions of the remaining liquid phases. The Roscoe equation has been used to describe the effect of presence of solid suspension (slurry effect) on the viscosity of partly crystallised slag systems. The model provides a good description of the experimental data of fully liquid, and liquid + solids mixtures, over the complete range of compositions and a wide range of temperatures. This model can now be used for viscosity predictions in industrial slag systems. Examples of the application of the new model to coal ash fluxing and blending are given in the paper. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Acid Mine Drainage (AMD) is one of the main environmental impacts caused by mining. Thus, innovative mitigation strategies should be exploited, to neutralize acidity and prevent mobilization of trace elements in AMD. The use of industrial byproducts has been considered an economically and environmentally effective alternative to remediate acid mine drainage. Therefore, the objective of this study was to evaluate the use of steel slag to mitigate acid mine drainage in a sulfidic material from a uranium mine, as an alternative to the use of limestone. Thus, increasing doses of two neutralizing agents were applied to a sulfidic material from the uranium mine Osamu Utsumi in Caldas, Minas Gerais State. A steel slag from the company ArcelorMittal Tubarão and a commercial limestone were used as neutralizing agents. The experiment was conducted in leaching columns, arranged in a completely randomized, [(2 x 3) + 1] factorial design, consisting of two neutralizing agents, three doses and one control, in three replications, totaling 21 experimental units. Electrical conductivity (EC), pH and the concentrations of Al, As, Ca, Cd, Cu, Fe, Mn, Ni, S, Se, and Zn were evaluated in the leached solutions. The trace element concentration was evaluated by ICP-OES. Furthermore, the CO2 emission was measured at the top of the leaching columns by capturing in NaOH solution and titration with HCl, in the presence of BaCl2. An increase in the pH of the leachate was observed for both neutralizing agents, with slightly higher values for steel slag. The EC was lower at the higher lime dose at an early stage of the experiment, and CO2 emission was greater with the use of limestone compared to steel slag. A decrease in trace element mobilization in the presence of both neutralizing agents was also observed. Therefore, the results showed that the use of steel slag is a suitable alternative to mitigate AMD, with the advantage of reducing CO2 emissions to the atmosphere compared to limestone.
Resumo:
With the use of supplementary cementing materials (SCMs) in concrete mixtures, salt scaling tests such as ASTM C672 have been found to be overly aggressive and do correlate well with field scaling performance. The reasons for this are thought to be because at high replacement levels, SCM mixtures can take longer to set and to develop their properties: neither of these factors is taken into account in the standard laboratory finishing and curing procedures. As a result, these variables were studied as well as a modified scaling test, based on the Quebec BNQ scaling test that had shown promise in other research. The experimental research focused on the evaluation of three scaling resistance tests, including the ASTM C672 test with normal curing as well as an accelerated curing regime used by VDOT for ASTM C1202 rapid chloride permeability tests and now included as an option in ASTM C1202. As well, several variations on the proposed draft ASTM WK9367 deicer scaling resistance test, based on the Quebec Ministry of Transportation BNQ test method, were evaluated for concretes containing varying amounts of slag cement. A total of 16 concrete mixtures were studied using both high alkali cement and low alkali cement, Grade 100 slag and Grade 120 slag with 0, 20, 35 and 50 percent slag replacement by mass of total cementing materials. Vinsol resin was used as the primary air entrainer and Micro Air® was used in two replicate mixes for comparison. Based on the results of this study, a draft alternative test method to ASTM C762 is proposed.
Resumo:
A resident within one of the counties in your region has expressed some concern regarding potential adverse health effects from dust and material that may be found within foundry slag that has been used as a replacement for road rock. This consultation includes a comparison of nuisance issues from dust generated from a road constructed of foundry slag and dust generated from a road constructed from typical road rock. This consultation also includes a discussion of the potential health effects of exposure of heavy metals from incidental ingestion of foundry slag.
Resumo:
The objective of this work was to evaluate the efficiency of superficial application of limestone and slag, and their effects on soil chemical attributes and on yield and mineral nutrition of soybean, maize, and Congo signal grass (Urochloa ruziziensis). The experiment was carried out in a Rhodic Hapludox under no tillage system. The treatments consisted of the use of limestone or slag (silicates of calcium and magnesium) to correct soil acidity, and of a control treatment without the use of soil correctives. Rates were calculated in order to raise soil base saturation up to 70%. Soybean was sown in November 2006 and maize in December 2007. Congo signal grass was sown right after the harvests of soybean and maize, and it was cropped during the off-seasons. Soil chemical attributes were evaluated at 6, 12, and 18 months after the application of the corrective materials. Slag is an efficient source for soil acidity correction, being able to raise the exchangeable base levels in the soil profile faster than lime. Both limestone and slag increase dry matter yield of Congo signal grass, and grain yield of soybean and maize. Slag is more effective in improving maize grain yield.
Resumo:
Basic oxygen furnace (BOF) slag media were studied as a potential treatment material in on-site sanitation systems. Batch and column studies were conducted to evaluate attenuation of the bacteriophage PR772 and 0.190 mu m diameter microspheres by BOF media, and to delineate the relative contributions of two principle processes of virus attenuation: inactivation and attachment. In the batch studies, conducted at 4 degrees C, substantial inactivation of PR772 did not occur in the pH 7.6 and 9.5 suspensions. At pH 11.4, bimodal inactivation of PR772 was observed, at an initial rate of 2.1 log C/C(0) day(-1) for the first two days, followed by a much slower rate of 0.124 log C/C(0) day(-1) over the following 10 days. Two column studies were conducted at 4 degrees C at a flow rate of 1 pore volume day(-1) using two slag sources (Stelco, Ontario; Tubarao, Brazil) combined with sand and pea gravel. In both column experiments, the effluent microsphere concentration approached input concentrations over time (reductions of 0.1-0.2 log C/C(0)), suggesting attachment processes for microspheres were negligible. Removal of PR772 virus was more pronounced both during the early stages of the experiments, but also after longer transport times (0.5-1.0 log C/C(0)). PR772 reduction appeared to be primarily as a result of virus inactivation in response to the elevated pH conditions generated by the BOF mixture (10.6-11.4). On-site sanitation systems using BOF media should be designed to maintain sufficient contact time between the BOF media and the wastewater to allow sufficient residence time of pathogens at elevated pH conditions. (C) 2009 Published by Elsevier Ltd.
Resumo:
The use of ceramic material as refractories in the manufacturing industry is a common practice worldwide. During usage, for example in the production of steel, these materials do experience severe working conditions including high temperatures, low pressures and corrosive environments. This results in lowered service lives and high consumptions of these materials. This, in turn, affects the productivity of the whole steel plant and thereby the cost. In order to investigate how the service life can be improved, studies have been carried out for refractories used in the inner lining of the steel ladles. More specifically, from the slag zone, where the corrosion is most severe. By combining thermodynamic simulations, plant trails and post-mortem studies of the refractories after service, vital information about the behaviour of the slagline refractories during steel refining and the causes of the accelerated wear in this ladle area has been achieved. The results from these studies show that the wear of the slagline refractories of the ladle is initiated at the preheating station, through reduction-oxidation reactions. The degree of the decarburization process is mostly dependent on the preheating fuel or the environment. For refractories without antioxidants, refractory decarburization is slower when coal gas is used in ladle preheating than when a mixture of oil and air is used. In addition, ladle preheating of the refractories without antioxidants leads to direct wear of the slagline refractories. This is due to the total loss of the matrix strength, which results in a sand-like product. Thermal chemical changes that take place in the slagline refractories are due to the MgO-C reaction as well as the formation of liquid phases from impurity oxides. In addition, the decrease in the system pressure during steel refining makes the MgO-C reaction take place at the steel refining temperatures. This reduces the refractory’s resistance to corrosion. This is a serious problem for both the magnesia-carbon and dolomite-carbon refractories. The studies of the reactions between the slagline refractories and the different slag compositions showed that slags rich in iron oxide lead mostly to the oxidation of carbon/graphite in the carbon-containing refractories. This leads to an increased porosity and wettability and therefore an enhanced penetration of slag into the refractory structure. If the slag contains high contents of alumina and or silica (such as the steel refining slag), reactions between the slag components and the dolomite-carbon refractory are promoted. This leads to the formation of low-temperature melting phases such as calcium-aluminates and silicates. The state of these reaction products during steel refining leads to an accelerated wear of the dolomite-carbon refractory. The main products of the reactions between the magnesia-carbon refractory and the steel refining slag are MgAl2O4 spinels, and calcium-aluminates, and silicates. Due to the good refractory properties of MgAl2O4 spinels, the slag corrosion resistance of the magnesiacarbon refractory is promoted.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The complex crystallization process of a Brazilian blast-furnace slag glass was investigated using differential scanning calorimetry (DSC), X-ray diffraction, optical microscopy, transmission electron microscopy (TEM), selected area diffraction (SAD), energy dispersive spectroscopy (EDS) and micro-Raman spectroscopy. Three crystalline phases (merwinite, melilite and larnite) were identified after heat treatment between Tg (742°C) and the DSC crystallization peak (T = 1000°C). Merwinite was identified as a metastable phase. A small amount (0.004 wt%) of metallic platinum was found in the glass composition. Particles of Pt3Fe, detected by EDS and SAD-TEM, were the starting points of crystallization acting, therefore, as heterogeneous nucleating sites. Only melilite and larnite precipitated in a glass sample heat-treated at 1000°C for 1 h. The flexural strength of this crystallized sample was less than that of the glass, probably due the allotropic phase transformation of larnite. © 2000 Published by Elsevier Science B.V. All rights reserved.