691 resultados para SKELETAL-MUSCLE MITOCHONDRIA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: Sarcopenia is thought to be associated with mitochondrial (Mito) loss. It is unclear whether the decrease in Mito content is consequent to aging per se or to decreased physical activity. OBJECTIVES: The objective of the study was to examine the influence of fitness on Mito content and function and to assess whether exercise could improve Mito function in older adults. DESIGN AND SUBJECTS: Three distinct studies were conducted: 1) a cross-sectional observation comparing Mito content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing chronically endurance-trained older adults and sedentary (S) subjects matched for age and gender; and 3) a 4-month exercise intervention in S. SETTING: The study was conducted at a university-based clinical research center. OUTCOMES: Mito volume density (MitoVd) was assessed by electron microscopy from vastus lateralis biopsies, electron transport chain proteins by Western blotting, mRNAs for transcription factors involved in M biogenesis by quantitative RT-PCR, and in vivo oxidative capacity (ATPmax) by (31)P-magnetice resonance spectroscopy. Peak oxygen uptake was measured by graded exercise test. RESULTS: Peak oxygen uptake was strongly correlated with MitoVd in 80 60- to 80-year-old adults. Comparison of chronically endurance-trained older adults vs S revealed differences in MitoVd, ATPmax, and some electron transport chain protein complexes. Finally, exercise intervention confirmed that S subjects are able to recover MitoVd, ATPmax, and specific transcription factors. CONCLUSIONS: These data suggest the following: 1) aging per se is not the primary culprit leading to Mito dysfunction; 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle Mito content and may prevent aging muscle comorbidities; and 3) the improvement of Mito function is all about content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Sarcopenia is thought to be associated with mitochondrial (M) loss. It is unclear whether the decrease in M content is consequent to aging per se or to decreased physical activity. Objectives: To examine the influence of fitness on M content and function, and to assess whether exercise could improve M function in older adults. Design and subjects: Three distinct studies were conducted: 1) a cross-sectional observation comparing M content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing chronically endurance-trained older adults (A) and sedentary (S) subjects matched for age and gender; 3) a 4-month exercise intervention in S. Setting: University-based clinical research center Outcomes: M volume density (Mv) was assessed by electron microscopy from vastus lateralis biopsies, electron transport chain proteins (ETC) by western blotting, mRNAs for transcription factors involved in M biogenesis by qRT-PCR and in-vivo oxidative capacity (ATPmax) by (31)P-MR spectroscopy. Peak oxygen uptake (VO2peak) was measured by GXT. Results: VO2peak was strongly correlated with Mv in eighty 60-80 yo adults. Comparison of A vs. S revealed differences in Mv, ATPmax and some ETC complexes. Finally, exercise intervention confirmed that S are able to recover Mv, ATPmax and specific transcription factors. Conclusions: These data suggest that 1) aging per se is not the primary culprit leading to M dysfunction, 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle M content and may prevent aging muscle comorbidities and 3) the improvement of M function is all about content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contraction-mediated lipolysis increases the association of lipid droplets and mitochondria, indicating an important role in the passage of fatty acids from lipid droplets to mitochondria in skeletal muscle. PLIN3 and PLIN5 are of particular interest to the lipid droplet–mitochondria interaction because PLIN3 is able to move about within cells and PLIN5 associates with skeletal muscle mitochondria. This study primarily investigated: 1) if PLIN3 is detected in skeletal muscle mitochondrial fraction; and 2) if mitochondrial protein content of PLIN3 and/or PLIN5 changes following stimulated contraction. A secondary aim was to determine if PLIN3 and PLIN5 associate and whether this changes following contraction. Male Long Evans rats (n = 21;age, 52 days; weight = 317 6 g) underwent 30 min of hindlimb stimulation (10 msec impulses, 100 Hz/3 sec at 10–20 V; train duration 100 msec). Contraction induced a ~50% reduction in intramuscular lipid content measured by oil red-O staining of red gastrocnemius muscle. Mitochondria were isolated from red gastrocnemius muscle by differential centrifugation and proteins were detected by western blotting. Mitochondrial PLIN5 content was ~1.6-fold higher following 30 min of contraction and PLIN3 content was detected in the mitochondrial fraction, and unchanged following contraction. An association between PLIN3 and PLIN5 was observed and remained unaltered following contraction. PLIN5 may play a role in mitochondria during lipolysis, which is consistent with a role in facilitating/regulating mitochondrial fatty acid oxidation. PLIN3 and PLIN5 may be working together on the lipid droplet and mitochondria during contraction-induced lipolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Sarcopenia is thought to be associated with mitochondrial (M) loss. It is unclear whether the decrease in M content is consequent to aging per se or to decreased physical activity. Objectives: To examine the influence of fitness on M content and function, and to assess whether exercise could improve M function in older adults. Design and subjects: Three distinct studies were conducted: 1) a cross-sectional observation comparing M content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing chronically endurance-trained older adults (A) and sedentary (S) subjects matched for age and gender; 3) a 4-month exercise intervention in S. Setting: University-based clinical research center Outcomes: M volume density (Mv) was assessed by electron microscopy from vastus lateralis biopsies, electron transport chain proteins (ETC) by western blotting, mRNAs for transcription factors involved in M biogenesis by qRT-PCR and in-vivo oxidative capacity (ATPmax) by (31)P-MR spectroscopy. Peak oxygen uptake (VO2peak) was measured by GXT. Results: VO2peak was strongly correlated with Mv in eighty 60-80 yo adults. Comparison of A vs. S revealed differences in Mv, ATPmax and some ETC complexes. Finally, exercise intervention confirmed that S are able to recover Mv, ATPmax and specific transcription factors. Conclusions: These data suggest that 1) aging per se is not the primary culprit leading to M dysfunction, 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle M content and may prevent aging muscle comorbidities and 3) the improvement of M function is all about content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regular aerobic exercise training, which is touted as a way to ameliorate metabolic diseases, increases aerobic capacity. Aerobic capacity usually declines with advanced age. The decline in aerobic capacity is typically associated by a decrease in the quality of skeletal muscle. At the molecular level, this decreased quality comes in part from perturbations in skeletal muscle mitochondria. Of particular is a decrease in the total amount of mitochondria that occupy the skeletal muscle volume. What is not well established is if this decrease in mitochondrial content is due to inactive lifestyle or the process of aging. Herein, the work of the thesis shows a clear connection between mitochondrial content and aerobic capacity. This indicates that active individuals with higher VChmax levels also contain higher volumes of mitochondria inside their muscle as opposed to sedentary counterparts who have lower levels of mitochondrial content. Upon taking these previously sedentary individuals and entering them into an aerobic exercise intervention, they are able to recover their mitochondrial content as well as function to similar levels of lifelong athletes of the same age. Furthermore, the results of this thesis show that mitochondrial content and function also correlate with exercise efficiency. If one is more efficient, he/she is able to expend less energy for a similar power output. Furthermore, individuals who increase in efficiency also increase in the ability to oxidize and utilize fat during pro-longed exercise. This increased reliance on fat after the intervention is associated with an increased amount of mitochondria, particularly in the intermyofibrillar region of skeletal muscle. Therefore, elderly adults who were once sedentary were able to recover mitochondrial content and function and are able to reap other health benefits from regular aerobic exercise training. Aging per se does not seem to be the culprit that will lead to metabolic diseases but rather it seems to be a lack of physical activity. -- Un entraînement sportif d'endurance, connu pour réduire le risque de développer des maladies métaboliques, augmente notre capacité aérobie. La capacité aérobie diminue généralement avec l'âge. Ce déclin est typiquement associé d'une diminution de la qualité du muscle squelettique. Au niveau moléculaire, cette diminution est due à des perturbations dans les mitochondries du muscle squelettique,, ce qui conduit à une diminution de la quantité totale des mitochondries présentes dans le muscle squelettique. Il n'a pas encore été établi si cette diminution de la teneur mitochondriale est due à un mode de vie sédentaire ou au processus du vieillissement. Ce travail de thèse montre un lien clair entre le contenu mitochondrial et la capacité aérobie. Il indique que des personnes âgées actives, avec des niveaux de V02max plus élevés, possèdent également un volume plus élevé de mitochondries dans leurs muscles en comparaison à leurs homologues sédentaires. En prenant des individus sédentaires et leur faisant pratiquer une activité physique aérobie, il est possible d'accroître leur contenu de même que leur fonction mitochondriale à des niveaux similaires à ceux d'athlètes du même âge ayant pratiqué une activité physique tout au long de leur vie. De plus, les résultats de ce travail démontrent que le contenu et la fonction mitochondriale sont en corrélation avec l'efficiscience lors d'exercice physique. En agumentant l'effiscience, les personnes sont alors capables de dépenser moins d'énergie pour une puissance d'exercice similaire. Donc, un volume mitochondrial accru dans le muscle squelettique, associé à une fonction mitochondriale améliorée, est associté à une augmentation de l'effiscience. En outre, les personnes qui augmentent leur effiscience, augmentent aussi leur capacité à oxyder les graisses durant l'exercice prolongé. Une augmentation du recours au graisses après l'intervention est associée à une quantité accrue de mitochondries, en particulier dans la région inter-myofibrillaire du muscle squelettique. Par conséquent, les personnes âgées autrefois sédentaires sont en mesure de récupérer leur contenu et leur fonction mitochondriale ainsi que d'autres avantages pour la santé grâce à un entraînement aérobie régulier. Le vieillissement en soi ne semble donc pas être le coupable conduisant aux maladies métaboliques qui semblent plutôt être lié à un manque d'activité physique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study tested the hypotheses that skeletal muscle mitochondrial ATP production rate (MAPR) is impaired in patients with peripheral arterial disease (PAD) and that it relates positively to their walking performances. Seven untrained patients, eight exercise-trained patients and 11 healthy controls completed a maximal walking test and had muscle sampled from the gastrocnemius medialis muscle. Muscle was analysed for its MAPR in the presence of pyruvate, palmitoyl-L-carnitine or both, as well as citrate synthase (CS) activity. MAPRs were not different between untrained PAD and controls. In contrast, MAPRs (pyruvate) were significantly higher in trained PAD vs. controls. MAPR (pyruvate combinations) was also significantly higher in trained than untrained PAD muscle. MAPR and CS activity were highly correlated with walking performance in patients, but not in controls. These data do not support the hypothesis that isolated mitochondria are functionally impaired in PAD and demonstrate that the muscle mitochondrial capacity to oxidize carbohydrate is positively related to walking performance in these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle mitochondrial content, size, oxidative capacity and aerobic glucose oxidation. To address if Mfn proteins are implicated in these exercise-induced responses, we measured Mfn1 and Mfn2 mRNA levels, pre-, post-, 2 and 24 h post-exercise. Additionally, we measured the expression levels of transcriptional regulators that control mitochondrial biogenesis and functions, including PGC-1alpha, NRF-1, NRF-2 and the recently implicated ERRalpha. We show that Mfn1, Mfn2, NRF-2 and COX IV mRNA were increased 24 h post-exercise, while PGC-1alpha and ERRalpha mRNA increased 2 h post-exercise. Finally, using in vitro cellular assays, we demonstrate that Mfn2 gene expression is driven by a PGC-1alpha programme dependent on ERRalpha. The PGC-1alpha/ERRalpha-mediated induction of Mfn2 suggests a role of these two factors in mitochondrial fusion. Our results provide evidence that PGC-1alpha not only mediates the increased expression of oxidative phosphorylation genes but also mediates alterations in mitochondrial architecture in response to aerobic exercise in humans

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smad3 is a key intracellular signaling mediator for both transforming growth factor-β and myostatin, two major regulators of skeletal muscle growth. Previous published work has revealed pronounced muscle atrophy together with impaired satellite cell functionality in Smad3-null muscles. In the present study, we have further validated a role for Smad3 signaling in skeletal muscle regeneration. Here, we show that Smad3-null mice had incomplete recovery of muscle weight and myofiber size after muscle injury. Histological/immunohistochemical analysis suggested impaired inflammatory response and reduced number of activated myoblasts during the early stages of muscle regeneration in the tibialis anterior muscle of Smad3-null mice. Nascent myofibers formed after muscle injury were also reduced in number. Moreover, Smad3-null regenerated muscle had decreased oxidative enzyme activity and impaired mitochondrial biogenesis, evident by the downregulation of the gene encoding mitochondrial transcription factor A, a master regulator of mitochondrial biogenesis. Consistent with known Smad3 function, reduced fibrotic tissue formation was also seen in regenerated Smad3-null muscle. In conclusion, Smad3 deficiency leads to impaired muscle regeneration, which underscores an essential role of Smad3 in postnatal myogenesis. Given the negative role of myostatin during muscle regeneration, the increased expression of myostatin observed in Smad3-null muscle may contribute to the regeneration defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzymatic activity was analyzed in the soleus, gastrocnemius (red and white) and plantaris muscles of acutely exercised rats after long-term administration of Panax ginseng extract in order to evaluate the protective role of ginseng against skeletal muscle oxidation. Ginseng extract (3, 10, 100, or 500 mg/kg) was administered orally for three months to male Wistar rats weighing 200 ± 50 g before exercise and to non-exercised rats (N = 8/group). The results showed a membrane stabilizing capacity of the extract since mitochondrial function measured on the basis of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities was reduced, on average, by 20% (P < 0.05) after exercise but the activities remained unchanged in animals treated with a ginseng dose of 100 mg/kg. Glutathione status did not show significant changes after exercise or treatment. Lipid peroxidation, measured on the basis of malondialdehyde levels, was significantly higher in all muscles after exercise, and again was reduced by about 74% (P < 0.05) by the use of ginseng extract. The administration of ginseng extract was able to protect muscle from exercise-induced oxidative stress irrespective of fiber type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

University, 2006 Dr. Sandra J. Peters Pyruvate dehydrogenase (PDH) catalyses the decarboxylation of pyruvate, to form acetyl-CoA. PDH activity is down-regulated by intrinsic PDH kinases (predominantly PDK2 and PDK4 isoforms), but the understanding of the PDK isoform distribution and adaptation to nutritional stresses has been restricted to mixed mitochondrial populations, and not delineated between subsarcolemmal (SS) and intermyofibrillar (IMF) subpopulations. SS and IMF mitochondria exhibit distinct morphological and biochemical properties; however the functional differences are not well understood. This study investigated the effect of fed (FED) versus 48 h total foodrestriction (FR) on rat red gastrocnemius muscle PDK2 and 4 isoform content in SS and IMF mitochondria. PDK4 content was ~3-5 fold higher in SS mitochondria compared to IMF (p=0.001), and increased with FR -3-4- fold in both subpopulations (p<0.001). PDK2 was -2.5-4 fold higher in SS mitochondria compared to IMF (p=0.001), but PDK2 was unaltered with FR. Citrate synthase activity (|imol/min/mg mitochondrial protein) was not different between either subpopulation. As well there were no significant differences between mitochondrial subpopulations in PDH complex components in both fed and FR states. These results demonstrate that there is a markedly higher content of both PDK isofonns in SS compared to IMF mitochondria. Although PDK2 does not increase in either subpopulation in response to FR, PDK4 increases to a similar extent in both SS and IMF after 48 h food-restriction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membranes are dynamic structures that affect cell structure and function. Compositional changes ofmembranes have been shown with the application of a perturbation; however these are limited to whole tissue analysis. The purpose of this thesis was to compare the phospholipid (PL) fatty acid (FA) composition of rat whole muscle (Wm) to 1) purified and non-purified subsarcolemmal (SS) mitochondria in soleus, plantaris, and red gastrocnemius, and 2) sarcolemma, transverse-tubules, SS and intermyofibrillar (IMF) mitochondria fix)m whole hindlimb. The major findings were that 1) contamination significantly altered the PL FA composition of the SS mitochondrial membrane fraction, 2) Wm and SS mitochondria compositions differed between muscle types, and 3) Wm did not accurately reflect the PL FA composition of any isolated subcellular membranes, with each being unique from each other. As such, the relevancy of the trends reported in the literature of the effects of perturbations on Wm may be limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surrounding lipid droplets in skeletal muscle are the perilipin (PLIN2-5) family of proteins, regulating lipid droplet metabolism. During exercise lipid droplets provide fatty acids to the mitochondria for oxidation while increasing their proximity to each other. Whether PLIN3 and PLIN5 associate with mitochondria following contraction has not been examined. To determine whether contraction altered mitochondrial PLIN3 and PLIN5 content, sedentary and endurance trained rats underwent acute contraction. The main outcomes are; 1) mitochondrial PLIN3 content is unaltered while mitochondrial PLIN5 content is increased following an acute contraction 2) mitochondrial PLIN3 content is higher in endurance trained rats when compared to sedentary and mitochondrial PLIN5 content is similar in both conditions 3) only PLIN5 mitochondrial content is increased similarly in both groups following acute contraction. This work highlights the dynamics of these two PLIN proteins, which may have roles not only on the lipid droplet but also on the mitochondria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first and rate-limiting step of lipolysis is the removal of the first fatty acid from a triglyceride molecule; it is catalyzed by adipose triglyceride lipase (ATGL). ATGL is co-activated by comparative gene identification-58 (CGI-58) and inhibited by the G(0)/G(1) switch gene-2 protein (G0S2). G0S2 has also recently been identified as a positive regulator of oxidative phosphorylation within the mitochondria. Previous research has demonstrated in cell culture, a dose dependent mechanism for inhibition by G0S2 on ATGL. However our data is not consistent with this hypothesis. There was no change in G0S2 protein content during an acute lipolytic inducing set of contractions in both whole muscle, and isolated mitochondria yet both ATGL and G0S2 increase following endurance training, in spite of the fact that there should be increased reliance on intramuscular lipolysis. Therefore, inhibition of ATGL by G0S2 appears to be regulated through more complicated intracellular or post-translation regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA.