995 resultados para SIR model
Resumo:
The critical behavior of the stochastic susceptible-infected-recovered model on a square lattice is obtained by numerical simulations and finite-size scaling. The order parameter as well as the distribution in the number of recovered individuals is determined as a function of the infection rate for several values of the system size. The analysis around criticality is obtained by exploring the close relationship between the present model and standard percolation theory. The quantity UP, equal to the ratio U between the second moment and the squared first moment of the size distribution multiplied by the order parameter P, is shown to have, for a square system, a universal value 1.0167(1) that is the same for site and bond percolation, confirming further that the SIR model is also in the percolation class.
Resumo:
In this work we present a discussion and the results of the simulation of disease spread using the Monte Carlo method. The dissemination model is the SIR model and presents as main characteristic the disease evolution among individuals of the population subdivided into three groups: susceptible (S), infected (I) and recovered (R). The technique used is based on the introduction of transition probabilities S-> I and I->R to do the spread of the disease, they are governed by a Poisson distribution. The simulation of the spread of disease was based on the randomness introduced, taking into account two basic parameters of the model, the power of infection and average time of the disease. Considering appropriate values of these parameters, the results are presented graphically and analysis of these results gives information on a group of individuals react to the changes of these parameters and what are the chances of a disease becoming a pandemic
Resumo:
Many dynamical processes are subject to abrupt changes in state. Often these perturbations can be periodic and of short duration relative to the evolving process. These types of phenomena are described well by what are referred to as impulsive differential equations, systems of differential equations coupled with discrete mappings in state space. In this thesis we employ impulsive differential equations to model disease transmission within an industrial livestock barn. In particular we focus on the poultry industry and a viral disease of poultry called Marek's disease. This system lends itself well to impulsive differential equations. Entire cohorts of poultry are introduced and removed from a barn concurrently. Additionally, Marek's disease is transmitted indirectly and the viral particles can survive outside the host for weeks. Therefore, depopulating, cleaning, and restocking of the barn are integral factors in modelling disease transmission and can be completely captured by the impulsive component of the model. Our model allows us to investigate how modern broiler farm practices can make disease elimination difficult or impossible to achieve. It also enables us to investigate factors that may contribute to virulence evolution. Our model suggests that by decrease the cohort duration or by decreasing the flock density, Marek's disease can be eliminated from a barn with no increase in cleaning effort. Unfortunately our model also suggests that these practices will lead to disease evolution towards greater virulence. Additionally, our model suggests that if intensive cleaning between cohorts does not rid the barn of disease, it may drive evolution and cause the disease to become more virulent.
Resumo:
Susceptible-infective-removed (SIR) models are commonly used for representing the spread of contagious diseases. A SIR model can be described in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. Here, this framework is employed for investigating the consequences of applying vaccine against the propagation of a contagious infection, by considering vaccination as a game, in the sense of game theory. In this game, the players are the government and the susceptible newborns. In order to maximize their own payoffs, the government attempts to reduce the costs for combating the epidemic, and the newborns may be vaccinated only when infective individuals are found in their neighborhoods and/or the government promotes an immunization program. As a consequence of these strategies supported by cost-benefit analysis and perceived risk, numerical simulations show that the disease is not fully eliminated and the government implements quasi-periodic vaccination campaigns. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
There are several ways of controlling the propagation of a contagious disease. For instance, to reduce the spreading of an airborne infection, individuals can be encouraged to remain in their homes and/or to wear face masks outside their domiciles. However, when a limited amount of masks is available, who should use them: the susceptible subjects, the infective persons or both populations? Here we employ susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations and probabilistic cellular automata in order to investigate how the deletion of links in the random complex network representing the social contacts among individuals affects the dynamics of a contagious disease. The inspiration for this study comes from recent discussions about the impact of measures usually recommended by health public organizations for preventing the propagation of the swine influenza A (H1N1) virus. Our answer to this question can be valid for other eco-epidemiological systems. (C) 2010 Elsevier BM. All rights reserved.
Resumo:
We study the spreading of contagious diseases in a population of constant size using susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations (ODEs) and probabilistic cellular automata (PCA). In the PCA model, each individual (represented by a cell in the lattice) is mainly locally connected to others. We investigate how the topological properties of the random network representing contacts among individuals influence the transient behavior and the permanent regime of the epidemiological system described by ODE and PCA. Our main conclusions are: (1) the basic reproduction number (commonly called R(0)) related to a disease propagation in a population cannot be uniquely determined from some features of transient behavior of the infective group; (2) R(0) cannot be associated to a unique combination of clustering coefficient and average shortest path length characterizing the contact network. We discuss how these results can embarrass the specification of control strategies for combating disease propagations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Knowing which individuals can be more efficient in spreading a pathogen throughout a determinate environment is a fundamental question in disease control. Indeed, over recent years the spread of epidemic diseases and its relationship with the topology of the involved system have been a recurrent topic in complex network theory, taking into account both network models and real-world data. In this paper we explore possible correlations between the heterogeneous spread of an epidemic disease governed by the susceptible-infected-recovered (SIR) model, and several attributes of the originating vertices, considering Erdos-Renyi (ER), Barabasi-Albert (BA) and random geometric graphs (RGG), as well as a real case study, the US air transportation network, which comprises the 500 busiest airports in the US along with inter-connections. Initially, the heterogeneity of the spreading is achieved by considering the RGG networks, in which we analytically derive an expression for the distribution of the spreading rates among the established contacts, by assuming that such rates decay exponentially with the distance that separates the individuals. Such a distribution is also considered for the ER and BA models, where we observe topological effects on the correlations. In the case of the airport network, the spreading rates are empirically defined, assumed to be directly proportional to the seat availability. Among both the theoretical and real networks considered, we observe a high correlation between the total epidemic prevalence and the degree, as well as the strength and the accessibility of the epidemic sources. For attributes such as the betweenness centrality and the k-shell index, however, the correlation depends on the topology considered.
Resumo:
In epidemiology, the basic reproduction number R-0 is usually defined as the average number of new infections caused by a single infective individual introduced into a completely susceptible population. According to this definition. R-0 is related to the initial stage of the spreading of a contagious disease. However, from epidemiological models based on ordinary differential equations (ODE), R-0 is commonly derived from a linear stability analysis and interpreted as a bifurcation parameter: typically, when R-0 >1, the contagious disease tends to persist in the population because the endemic stationary solution is asymptotically stable: when R-0 <1, the corresponding pathogen tends to naturally disappear because the disease-free stationary solution is asymptotically stable. Here we intend to answer the following question: Do these two different approaches for calculating R-0 give the same numerical values? In other words, is the number of secondary infections caused by a unique sick individual equal to the threshold obtained from stability analysis of steady states of ODE? For finding the answer, we use a susceptibleinfective-recovered (SIR) model described in terms of ODE and also in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. The values of R-0 obtained from both approaches are compared, showing good agreement. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Compartmental epidemiological models have been developed since the 1920s and successfully applied to study the propagation of infectious diseases. Besides, due to their structure, in the 1960s an interesting version of these models was developed to clarify some aspects of rumor propagation, considering that spreading an infectious disease or disseminating information is analogous phenomena. Here, in an analogy with the SIR (Susceptible-Infected-Removed) epidemiological model, the ISS (Ignorant-Spreader-Stifler) rumor spreading model is studied. By using concepts from the Dynamical Systems Theory, stability of equilibrium points is established, according to propagation parameters and initial conditions. Some numerical experiments are conducted in order to validate the model.
Resumo:
Since the computer viruses pose a serious problem to individual and corporative computer systems, a lot of effort has been dedicated to study how to avoid their deleterious actions, trying to create anti-virus programs acting as vaccines in personal computers or in strategic network nodes. Another way to combat viruses propagation is to establish preventive policies based on the whole operation of a system that can be modeled with population models, similar to those that are used in epidemiological studies. Here, a modified version of the SIR (Susceptible-Infected-Removed) model is presented and how its parameters are related to network characteristics is explained. Then, disease-free and endemic equilibrium points are calculated, stability and bifurcation conditions are derived and some numerical simulations are shown. The relations among the model parameters in the several bifurcation conditions allow a network design minimizing viruses risks. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The interplay of seasonality, the system's nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.
Resumo:
Purpose: To study the anti-tumoral effect of sunitinib eluting beads in the rabbit VX2 tumor modelMaterials: VX2 tumor were implanted in the left liver lobe of New-Zealand white rabbits. Seven animals received 0.2ml of DC Beads loaded with 6mg of sunitinb (group 1), 6 animals received 0.2ml of DC Beads (group 2) and 6 animals received NaCl 0.9% intra arterially in the left hepatic artery. One animal in each group was sacrificed at 24 hours and the others were left to survive. Liver enzyme were measured daily. In group 1 plasmatic sunitinib concentration were measured daily by LC MS/MS tandem mass spectroscopy. At day 15 all living animals were sacrficed. After sacrifice, or premature euthanasia the livers were harvested for determination of the VEGF receptor tyrosine kinase activity by western blot and histopathological examination.Results: In group 1, no animal died during follow-up. In group 2 and 3, respectively 2 and 3 animals died during follow-up. In group 1 plasmatic sunitinib level remained under therapeutic concentration during the whole experiment. There was an evident lack of phosphorylation of the RTK In group 1 and there was an augmentation of the RTK phosphorylation in group 2 at 24 hours. No difference in RTK activity was noticable at 15 days. From the histopathological point of view it was unpossible to differentiate treatment induced from spontaneous necrosis of tumors.Conclusions: Administration of sunitinib eluting Beads in VX2 carrying rabbits inhibits the activation of RTK's triggered by ischemia. It also seems to prolong survival of the treated animals.
Resumo:
We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We employ the approach of stochastic dynamics to describe the dissemination of vector-borne diseases such as dengue, and we focus our attention on the characterization of the threshold of the epidemic. The coexistence space comprises two representative spatial structures for both human and mosquito populations. The human population has its evolution described by a process that is similar to the Susceptible-Infected-Recovered (SIR) dynamics. The population of mosquitoes follows a dynamic of the type of the Susceptible Infected-Susceptible (SIS) model. The coexistence space is a bipartite lattice constituted by two structures representing the human and mosquito populations. We develop a truncation scheme to solve the evolution equations for the densities and the two-site correlations from which we get the threshold of the disease and the reproductive ratio. We present a precise deØnition of the reproductive ratio which reveals the importance of the correlations developed in the early stage of the disease. According to our deØnition, the reproductive rate is directed related to the conditional probability of the occurrence of a susceptible human (mosquito) given the presence in the neighborhood of an infected mosquito (human). The threshold of the epidemic as well as the phase transition between the epidemic and the non-epidemic states are also obtained by performing Monte Carlo simulations. References: [1] David R. de Souza, T^ania Tom∂e, , Suani R. T. Pinho, Florisneide R. Barreto and M∂ario J. de Oliveira, Phys. Rev. E 87, 012709 (2013). [2] D. R. de Souza, T. Tom∂e and R. M. ZiÆ, J. Stat. Mech. P03006 (2011).