30 resultados para SIMOX


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of hardening the buried oxides (BOX) in separation by implanted oxygen (SIMOX) silicon-on-insulator (SOI) wafers to total-dose irradiation has been made by implanting nitrogen into the BOX layers with a constant dose at different implantation energies. The total-dose radiation hardness of the BOX layers is characterized by the high frequency capacitance-voltage (C-V) technique. The experimental results show that the implantation of nitrogen into the BOX layers can increase the BOX hardness to total-dose irradiation. Particularly, the implantation energy of nitrogen ions plays an important role in improving the radiation hardness of the BOX layers. The optimized implantation energy being used for a nitrogen dose, the hardness of BOX can be considerably improved. In addition, the C-V results show that there are differences between the BOX capacitances due to the different nitrogen implantation energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to obtain greater radiation hardness for SIMOX (separation by implanted oxygen) materials, nitrogen was implanted into SIMOX BOX (buried oxide). However, it has been found by the C-V technique employed in this work that there is an obvious increase of the fixed positive charge density in the nitrogen-implanted BOX with a 150 out thickness and 4 x 10(15) cm(-2) nitrogen implantation dose, compared with that unimplanted with nitrogen. On the other hand, for the BOX layers with a 375 nm thickness and implanted with 2 x 10(15) and 3 x 10(15) cm(-2) nitrogen doses respectively, the increase of the fixed positive charge density induced by implanted nitrogen has not been observed. The post-implantation annealing conditions are identical for all the nitrogen-implanted samples. The increase in fixed positive charge density in the nitrogen-implanted 150 nm BOX is ascribed to the accumulation of implanted nitrogen near the BOX/Si interface due to the post-implantation annealing process according to SIMS results. In addition, it has also been found that the fixed positive charge density in initial BOX is very small. This means SIMOX BOX has a much lower oxide charge density than thermal SiO2 which contains a lot of oxide charges in most cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge trapping in the fluorinated SIMOX buried oxides before and after ionizing radiation has been investigated by means of C-V characteristics. Radiation-induced positive charge trapping which results in negative shift of C-V curves can be restrained by implanting fluorine ions into the SIMOX buried oxides. Pre-radiation charge trapping is suppressed in the fluorinated buried oxides. The fluorine dose and post-implantation anneal time play a very important role in the control of charge trapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionizing radiation response of partially-depleted MOS transistors fabricated in the, fluorinated SIMOX wafers has been investigated. The experimental data show that the, radiation-induced threshold voltage shift of PMOSFETs and NMOSFETs, as well as the radiation-induced increase of off-state leakage current of NMOSFETs can be restrained by implanting fluorine ions into the buried oxide of SIMOX wafers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residual defects in the overlayer of fully annealed SIMOX material have been studied by means of a chemical etching technique. The etching procedure has been calibrated and an optimum recipe is reported. Observations using optical microscopy and transmission electron microscopy have been used to quantify the defect densities and good agreement between the two techniques has been established, confirming that the optimised chemical etching process can be used with confidence to determine the dislocation density for values < 10(7) cm-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation hardness of SIMOX(separation by implanted oxygen)/NMOSFET by implanting N and F ion has been carefully studied in this paper.Both N and F ion implantation can reduce hole traps in the buried oxide and the interfacial regions,which consequently improves the radiation hardness,especially under high dose radiation conditions.Moreover,experimental data show that the higher dose of the N and F ion implantation is,the better radiation hardness is achieved.In order to minimize the influence on the threshold voltage of devices,it is important to choose suitable implantation dose and energy of N or F implantation that have smaller impact on the preradiation device performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SIMOX SOI材料的埋氧中注氮是为了增强该类材料的抗辐射能力.通过C-V研究表明,对于埋氧层为150 nm的SIMOX SOI材料来说,当在其埋氧中注入4×10~(15)cm~(-2)剂量的氮后,与未注氮埋氧相比,注氮埋氧中的固定正电荷密度显著增加了;而对于埋氧层为375 nm的SIMOX SOI材料来说,当注氮剂量分别为2×10~(15)cm~(-2)和3×10~(15)cm~(-2)时,并未发现埋氧中固定正电荷密度的增加.所有SIMOX注氮后的退火条件是完全相同的.通过SIMS分析,将薄埋氧中固定正电荷密度的增加归结为注氮后的退火所引起的氮在埋氧与Si界面附近的积累.同时还发现,未注氮埋氧中的固定正电荷密度是非常小的.这意味着通常情况下在热生长SiO_2膜中大量存在的氧化物电荷,其数量在SIMOX埋氧中则要相对少得多.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the total-dose radiation hardness of the buried oxides(BOX) in the structure of separa tion-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI), nitrogen ions are implanted into the buried oxides with two different doses,2 × 1015 and 3 × 1015 cm-2 , respectively. The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source. Despite the small difference between the doses of nitrogen implantation, the nitrogen-implanted 2 × 1015 cm-2 BOX has a much higher hardness than the control sample (i. e. the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5 × 104rad(Si), whereas the nitrogen-implanted 3 × 1015 cm-2 BOX has a lower hardness than the control sample. However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5 × 104 to 5 × 105 rad (Si)). The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed. In addition, the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

研究了氮离子注入对SIMOX器件电特性的影响.氮注入SIMOX的埋氧层并退火后,将减小前栅MOS-FET/SIMOX的阈电压,提高其漏源击穿电压但对栅击穿电压影响较小.氮注入方式对SIMOX器件的I-V特性有重要影响.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用在SIMOX圆片埋氧层中注入氟(F)离子的方法改善SIMOX的抗总剂量辐射能力,通过比较未注F样品和注F样品辐照前后SIMOX器件Ids-Vgs特性和阈值电压,发现F具有抑制辐射感生pMOSFET和nMOSFET阈值电压漂移的能力,并且可以减小nMOSFET中由辐照所产生的漏电流.说明在SOI材料中前后Si/SiO2界面处的F可以减少空穴陷阱密度,有助于提高SIMOX的抗总剂量辐射能力.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foi estudado o comportamento do As (dopante tipo n) em dois tipos diferentes de substratos de Si: bulk e SIMOX (Separation by IMplanted OXygen). Ambos os substratos receberam uma implantação de 5x1014 cm-2 de As+ com energia de 20 keV. Após as implantações, as amostras foram recozidas por um dos dois processos a seguir: recozimento rápido (RTA, Rapid Thermal Annealing) ou convencional (FA, Furnace Annealing). A caracterização física e elétrica foi feita através do uso de diversas técnicas: SIMS (Secondary Ion Mass Spectrometry), RBS (Rutherford Backscattering Spectrometry), MEIS (Medium Energy Ion Scattering), medidas de resistência de folha, medidas Hall e medidas de perfil de portadores por oxidação anódica. Na comparação entre os substratos SIMOX e Si bulk, os resultados indicaram que o SIMOX se mostrou superior ao Si bulk em todos os aspectos, ou seja, menor concentração de defeitos e menor perda de dopantes para a atmosfera após os recozimentos, maior concentração de portadores e menor resistência de folha. A substitucionalidade do As foi maior no SIMOX após RTA, mas semelhante nos dois substratos após FA. Na comparação entre RTA e FA, o primeiro método se mostrou mais eficiente em todos os aspectos mencionados acima. As explicações para o comportamento observado foram atribuídas à presença de maior concentração de vacâncias no SIMOX do que no Si bulk e à interação destas vacâncias com os dopantes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of ZrO2 have been deposited by ALD on Si(100) and SIMOX using two different metalorganic complexes of Zr as precursors. These films are characterized by X-ray diffraction, transmission and scanning electron microscopies, infrared spectroscopy, and electrical measurements. These show that amorphous ZrO2 films of high dielectric quality may be grown on Si(100) starting about 400degreesC. As the growth temperature is raised, the films become crystalline, the phase formed and the microstructure depending on precursor molecular structure. The phase of ZrO2 formed depends also on the relative duration of the precursor and oxygen pulses. XPS and IR spectroscopy show that films grown at low temperatures contain chemically unbound carbon, its extent depending on the precursor. C-V measurements show that films grown on Si(100) have low interface state density, low leakage current, a hysteresis width of only 10-250 mV and a dielectric constant of similar to16-25.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon-on-insulating multi-layer (SOIM) materials were fabricated by co-implantation of oxygen and nitrogen ions with different energies and doses. The multilayer microstructure was investigated by cross-sectional transmission electron microscopy. P-channel metal-oxide-semiconductor (PMOS) transistors and metal-semiconductor-insulator-semiconductor (MSIS) capacitors were produced by these materials. After the irradiated total dose reaches 3 x 10(5) rad (Si), the threshold voltage of the SOIM-based PMOS transistor only shifts 0.07 V, while thin silicon-on-insulating buried-oxide SIMOX-based PMOS transistors have a shift of 1.2V, where SIMOX represents the separated by implanted oxygen. The difference of capacitance of the SOIM-based MSIS capacitors before and after irradiation is less than that of the thin-box SIMOX-based MSIS capacitor. The results suggest that the SOIM materials have a more remarkable irradiation tolerance of total dose effect, compared to the thin-buried-oxide SIMOX materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In our work, nitrogen ions were implanted into separation-by-implantation-of-oxygen (SIMOX) wafers to improve the radiation hardness of the SIMOX material. The experiments of secondary ion mass spectroscopy (SIMS) analysis showed that some nitrogen ions were distributed in the buried oxide layers and some others were collected at the Si/SiO2 interface after annealing. The results of electron paramagnetic resonance (EPR) suggested the density of the defects in the nitrided samples changed with different nitrogen ion implantation energies. Semiconductor-insulator-semiconductor (SIS) capacitors were made on the materials, and capacitance-voltage (C-V) measurements were carried out to confirm the results. The super total dose radiation tolerance of the materials was verified by the small increase of the drain leakage current of the metal-oxide-semiconductor field effect transistor with n-channel (NMOSFETs) fabricated on the materials before and after total dose irradiation. The optimum implantation energy was also determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects, caused by the process of the implantation of nitrogen in the buried oxide layer of SIMOX wafer, on the characteristics of partially depleted silicon-on-insulator nMOSFET have been studied. The experimental results show that the channel electron mobilities of the devices fabricated on the SIMON (separation by implanted oxygen and nitrogen) wafers are lower than those of the devices made on the SIMOX (separation by implanted oxygen) wafers. The devices corresponding to the lowest implantation dose have the lowest mobility within the range of the implantation dose given in this paper. The value of the channel electron mobility rises slightly and tends to a limit when the implantation dose becomes greater. This is explained in terms of the rough Si/SiO2 interface due to the process of implantation of nitrogen. The increasing negative shifts of the threshold voltages for the devices fabricated on the SIMON wafers are also observed with the increase of implanting dose of nitrogen. However, for the devices fabricated on the SIMON wafers with the lowest dose of implanted nitrogen in this paper, their threshold voltages are slightly larger on the average than those prepared on the SIMOX wafers. The shifts are considered to be due to the increment of the fixed oxide charge in SiO2 layer and the change of the density of the interface-trapped charge with the value and distribution included. In particular, the devices fabricated on the SIMON wafers show a weakened kink effect, compared to the ones made on the SIMOX wafers.