906 resultados para SILICA-FUME


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the effect of silica fume and styrene-butadiene latex (SBR) on the microstructure of the interfacial transition zone (ITZ) between Portland cement paste and aggregates (basalt). Scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis system (EDX) was used to determine the ITZ thickness. In the plain concrete a marked ITZ around the aggregate particles (55 mu m) was observed, while in concretes with silica fume or latex SBR the ITZ was less pronounced (35-40 mu m). However, better results were observed in concretes with silica fume and latex SBR (20-25 mu m). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"November 1997. "

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atualmente, o aproveitamento de resíduos na construção civil tem sido estimulado, uma vez que esse setor apresenta-se como um dos maiores consumidores de materiais naturais em seus processos e produtos. As cinzas ocupam lugar de destaque entre os resíduos agroindustriais por resultarem de processos de geração de energia. Grande parte dessas cinzas possui atividade pozolânica, podendo ser utilizada como substituto parcial do cimento Portland, resultando numa economia significativa de energia e custo. Este trabalho faz parte de uma pesquisa mais ampla, a qual busca avaliar a viabilidade técnica da cinza da casca da castanha de caju (CCCC) como adição mineral em matrizes de cimento Portland, como também, propor uma metodologia de análise de cinzas agroindustriais. Aplicou-se a técnica de difratometria de raios X para avaliar a reatividade do hidróxido de cálcio pela cinza da casca da castanha de caju em pastas, empregaram-se teores de substituição entre 2,5 e 30,0% e os difratogramas das pastas foram comparados com os das pastas confeccionadas com sílica ativa, executados sobre as mesmas condições de ensaio. Os resultados apontam para a ausência de reatividade pozolânica da CCCC com o cimento Portland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At present, the cement industry generates approximately 5% of the world`s anthropogenic CO(2) emissions. This share is expected to increase since demand for cement based products is forecast to multiply by a factor of 2.5 within the next 40 years and the traditional strategies to mitigate emissions, focused on the production of cement, will not be capable of compensating such growth. Therefore, additional mitigation strategies are needed, including an increase in the efficiency of cement use. This paper proposes indicators for measuring cement use efficiency, presents a benchmark based on literature data and discusses potential gains in efficiency. The binder intensity (bi) index measures the amount of binder (kg m(-3)) necessary to deliver 1 MPa of mechanical strength, and consequently express the efficiency of using binder materials. The CO(2) intensity index (ci) allows estimating the global warming potential of concrete formulations. Research benchmarks show that bi similar to 5 kg m(-3) MPa(-1) are feasible and have already been achieved for concretes >50 MPa. However, concretes with lower compressive strengths have binder intensities varying between 10 and 20 kg m(-3) MPa(-1). These values can be a result of the minimum cement content established in many standards and reveal a significant potential for performance gains. In addition, combinations of low bi and ci are shown to be feasible. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the coupled effect of temperature and silica fume addition on rheological, mechanical behaviour and porosity of grouts based on CEMI 42.5R, proportioned with a polycarboxylate-based high range water reducer. Preliminary tests were conducted to focus on the grout best able to fill a fibrous network since the goal of this study was to develop an optimized grout able to be injected in a mat of steel fibers for concrete strengthening. The grout composition was developed based on criteria for fresh state and hardened state properties. For a CEMI 42.5R based grout different high range water reducer dosages (0%, 0.2%, 0.4%, 0.5%, 0.7%) and silica fume (SF) dosages (0%, 2%, 4%) were tested (as replacement of cement by mass). Rheological measurements were used to investigate the effect of polycarboxylates (PCEs) and SF dosage on grout properties, particularly its workability loss, as the mix was to be injected in a matrix of steel fibers for concrete jacketing. The workability behaviour was characterized by the rheological parameters yield stress and plastic viscosity (for different grout temperatures and resting times), as well as the procedures of mini slump cone and funnel flow time. Then, further development focused only on the best grout compositions. The cement substitution by 2% of SF exhibited the best overall behaviour and was considered as the most promising compared to the others compositions tested. Concerning the fresh state analysis, a significant workability loss was detected if grout temperature increased above 35 degrees C. Below this temperature the grout presented a self-levelling behaviour and a life time equal to 45 min. In the hardened state, silica fumes increased not only the grout's porosity but also the grout's compressive strength at later ages, since the pozzolanic contribution to the compressive strength does not occur until 28 d and beyond. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Edificações

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concrete admixture Ipanex (Registered trademark) manufactured by IPA Systems Inc. was submitted to the Iowa Department of Transportation (Iowa DOT) New Products Committee on April 15, 1998. The New Products Committee requested that the Iowa DOT Materials Laboratory evaluate the durability, corrosion inhibiting and concrete permeability reduction effects of this admixture. This report is intended to present the results of testing in Iowa DOT materials laboratories, review a Pennsylvania State University report, as well as review the IPA Systems Inc. marketing literature. The objective is to provide the New Products Committee with a recommendation concerning approval of this product based on the information gathered. The portland cement concrete admixture Ipanex (Registered trademark) did not show any significant benefit in terms of improvement in areas of permeability, chloride resistance and strength in the testing performed at the Iowa DOT. The literature and reports reviewed did not provide enough credible evidence to refute this conclusion. Additionally, the benefits ascribed to this product can be more economically achieved using other currently available products such as slag and silica fume. The recommendation is that this product not be approved for use on State projects in Iowa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Iowa D.O.T. Laboratory built machine was constructed for the chloride permeability testing of concrete by measuring electric current through a specimen between a salt solution and a base solution. This study had two purposes. The first was to evaluate the machine's performance. To do this, three concrete mixes were made consisting of different cement factors and water/cement ratios. Each mix was tested for chloride ion content by the 90- day salt ponding method and for chloride permeability at a 28-day cure by the permeability machine. The results from each test were evaluated to see if there was correlation between chloride ion content and the chloride permeability. It was determined that there was a correlation and that the permeability machine was satisfactory for determining chloride permeability in concrete. The second purpose of this study was to examine the effects that pozzolans have on the chloride permeability of concrete. Four mixes were made: one without any pozzolans as a control, one with class C fly ash, one with class F fly ash, and one with silica fume. Specimens from each mix were evaluated for chloride ion content by the 90-day salt ponding test and by the laboratory built machine for chloride permeability after curing 28 days. Specimens from these mixes were also taken from the salt ponding slabs after completion of the ponding test to examine the effect chloride ion content has on the operation of the chloride permeability machine. Specimens containing pozzolans were also examined for chloride permeability after a cure of 180 days. It was determined that the addition of pozzolans to concrete lowers the chloride permeability as measured by the permeability machine. Class F fly ash and silica fume in the concrete had a major effect in lowering the chloride permeability in concrete as measured by the permeability machine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Influence of admixture on the rheological behavior of high performance self-compacting paste. This research proposes to study the influence of the specific area, mould and surface texture of admixtures on the rheological behavior of high performance self-compacting paste (HPSCP). The selected admixtures are calcareous filler and basalt filler, which are industrial residues, thus contributing to sustainable development. The paste is made up of cement, silica fume, calcareous filler or basalt filler, water and superplasticizer additive. For this study, the water/cement ratios are fixed = 0.40 L kg(-1); silica fume/cement = 0.10 kg kg(-1); the filler/cement and superplasticizer/cement ratios are determined through Marsh cone and mini-slump tests. The results show that for same filler/cement ratios, the ratios of superplasticizer to paste with calcareous filler are significantly lower than those of paste with basalt filler. The results show that the specific area, mould and surface texture of these admixtures significantly influence the rheological behavior of HPSCP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta um método de produção para a obtenção de cinza de casca de arroz (CCA) de elevada reatividade a partir de um processo de combustão não controlado. São detalhados os processos de obtenção da CCA, assim como sua atividade pozolânica. Pela Análise Termogravimétrica (TGA), foi possível quantificar o consumo de portlandita por parte da CCA, ou seja, a reação pozolânica. Adicionalmente, foram preparadas argamassas com diferentes porcentagens de CCA (5%, 10% e 15%) com o objetivo de comprovar sua influência nas propriedades mecânicas. Os resultados obtidos mostram que a CCA em estudo apresenta elevada reatividade, podendo ser utilizada como uma fonte alternativa da sílica ativa (SA).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research studies the influence of the pozzolanic activity of the calcareous and basalt in the resistence behavior of the compressive strength of high performance self-compacting concrete (HPSCC). The selected aditives are the calcareous filler and basalt filler, for they are industrial residues helping that way the sustainable development. The paste of this concrete type is constituted of cement, silica fume, calcareous filler or basalt filler, water and superplasticizer additive. In this research the relationships water/cement are fixed in 0,40 kg/kg, silica fume/cement of 0,10 kg/kg and the relationships filler/cement and superplasticizer/cement are determined through of Marsh́s cone and mini-slump tests. The granular skeleton is gotten from a composition between quartzous sand and brita of basalt that presents the lesser index of emptinesses. The results show that the HPSCC with the addition of calcareous filler has greater compressive strength than what the HPSCC with addition of basalt filler in the ages of 7, 28 and 63 days. It is explained by the fact that the calcareous filler presents greater index of pozzolanic activity than the basalt filler. Besides that the relation water/fine for the HPSCC with calcareous filler is 0,27 l/kg whereas the HPSCC with basalt filler is of 0,29 l/kg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)