901 resultados para SIDE EFFECTS
Resumo:
Purpose Exercise for Health was a randomized, controlled trial designed to evaluate two modes of delivering (face-to-face [FtF] and over-the-telephone [Tel]) an 8-month translational exercise intervention, commencing 6-weeks post-breast cancer surgery (PS). Methods Outcomes included quality of life (QoL), function (fitness and upper-body) and treatment-related side effects (fatigue, lymphoedema, body mass index, menopausal symptoms, anxiety, depression and pain). Generalised estimating equation modelling determined time (baseline [5-weeks PS], mid-intervention [6-months PS], post-intervention [12-months PS]), group (FtF, Tel, Usual Care [UC]) and time-by-group effects. 194 women representative of the breast cancer population were randomised to the FtF (n=67), Tel (n=67) and UC (n=60) groups. Results: There were significant (p<0.05) interaction effects on QoL, fitness and fatigue, with differences being observed between the treatment groups and the UC group. Trends observed for the treatment groups were similar. The treatment groups reported improved QoL, fitness and fatigue over time and changes observed between baseline and post-intervention were clinically relevant. In contrast, the UC group experienced no change, or worsening QoL, fitness and fatigue, mid-intervention. Although improvements in the UC group occurred by 12-months post-surgery, the change did not meet the clinically relevant threshold. There were no differences in other treatment-related side-effects between groups. Conclusion This translational intervention trial, delivered either face-to-face or over-the-telephone, supports exercise as a form of adjuvant breast cancer therapy that can prevent declines in fitness and function during treatment and optimise recovery post-treatment.
Resumo:
In three studies we looked at two typical misconceptions of probability: the representativeness heuristic, and the equiprobability bias. The literature on statistics education predicts that some typical errors and biases (e.g., the equiprobability bias) increase with education, whereas others decrease. This is in contrast with reasoning theorists’ prediction who propose that education reduces misconceptions in general. They also predict that students with higher cognitive ability and higher need for cognition are less susceptible to biases. In Experiments 1 and 2 we found that the equiprobability bias increased with statistics education, and it was negatively correlated with students’ cognitive abilities. The representativeness heuristic was mostly unaffected by education, and it was also unrelated to cognitive abilities. In Experiment 3 we demonstrated through an instruction manipulation (by asking participants to think logically vs. rely on their intuitions) that the reason for these differences was that these biases originated in different cognitive processes.