995 resultados para SIBLING SPECIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the wing morphology, echolocation calls, foraging behaviour and flight speed of Tylonycteris pachypus and Tylonycteris robustula in Longzhou County, South China during the summer (June–August) of 2005. The wingspan, wing loading and aspect ratio of the two species were relatively low, and those of T. pachypus were lower compared with T. robustula. The echolocation calls of T. pachypus and T. robustula consist of a broadband frequency modulated (FM) sweep followed by a short narrowband FM sweep. The dominant frequency of calls of T. pachypus was 65.1 kHz, whereas that of T. robustula was 57.7 kHz. The call frequencies (including highest frequency of the call, lowest frequency of the call and frequency of the call that contained most energy) of T. pachypus were higher than those of T. robustula, and the pulse duration of the former was longer than that of the latter. The inter-pulse interval and bandwidth of the calls were not significantly different between the two species. Tylonycteris pachypus foraged in more complex environments than T. robustula, although the two species were both netted in edge habitats (around trees or houses), along pathways and in the tops of trees. Tylonycteris pachypus flew slower (straight level flight speed, 4.3 m s−1) than T. robustula (straight level flight speed, 4.8 m s−1). We discuss the relationship between wing morphology, echolocation calls, foraging behaviour and flight speed, and demonstrate resource partitioning between these two species in terms of morphological and behavioural factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic variation of Contracaecum ogmorhini (sensu lato) populations from different otariid seals of the northern and southern hemisphere was studied on the basis of 18 enzyme loci as well as preliminary sequence analysis of the mitochondrial cyt b gene (260 bp). Samples were collected from Zalophus californianus in the boreal region and from Arctocephalus pusillus pusillus, A. pusillus doriferus and A. australis from the austral region. Marked genetic heterogeneity was found between C. ogmorhini (sensu lato) samples from the boreal and austral region, respectively. Two loci (Mdh-2 and NADHdh) showed fixed differences and a further three loci (Iddh, Mdh-1 and 6Pgdh) were highly differentiated between boreal and austral samples. Their average genetic distance was DNei = 0.36 at isozyme level. At mitochondrial DNA level, an average proportion of nucleotide substitution of 3.7% was observed. These findings support the existence of two distinct sibling species, for which the names C. ogmorhini (sensu stricto) and C. margolisi n. sp., respectively, for the austral and boreal taxon, are proposed. A description for C. margolisi n. sp. is provided. No diagnostic morphological characters have so far been detected; on the other hand, two enzyme loci, Mdh-2 and NADHdh, fully diagnostic between the two species, can be used for the routine identification of males, females and larval stages. Mirounga leonina was found to host C. ogmorhini (s.s.) inmixed infections with C. osculatum (s.l.) (of which C. ogmorhini (s.l.) was in the past considered to be a synonym) and C. miroungae; no hybrid genotypes were found,confirming the reproductive isolation of these three anisakid species. The hosts and geographical range so far recorded for C. margolisi n. sp. and C. ogmorhini (s.s.) are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fungal species Cryptococcus neoformans and Cryptococcus gattii cause respiratory and neurological disease in animals and humans following inhalation of basidiospores or desiccated yeast cells from the environment. Sexual reproduction in C. neoformans and C. gattii is controlled by a bipolar system in which a single mating type locus (MAT) specifies compatibility. These two species are dimorphic, growing as yeast in the asexual stage, and producing hyphae, basidia, and basidiospores during the sexual stage. In contrast, Filobasidiella depauperata, one of the closest related species, grows exclusively as hyphae and it is found in association with decaying insects. Examination of two available strains of F. depauperata showed that the life cycle of this fungal species shares features associated with the unisexual or same-sex mating cycle in C. neoformans. Therefore, F. depauperata may represent a homothallic and possibly an obligately sexual fungal species. RAPD genotyping of 39 randomly isolated progeny from isolate CBS7855 revealed a new genotype pattern in one of the isolated basidiospores progeny, therefore suggesting that the homothallic cycle in F. depauperata could lead to the emergence of new genotypes. Phylogenetic analyses of genes linked to MAT in C. neoformans indicated that two of these genes in F. depauperata, MYO2 and STE20, appear to form a monophyletic clade with the MATa alleles of C. neoformans and C. gattii, and thus these genes may have been recruited to the MAT locus before F. depauperata diverged. Furthermore, the ancestral MATa locus may have undergone accelerated evolution prior to the divergence of the pathogenic Cryptococcus species since several of the genes linked to the MATa locus appear to have a higher number of changes and substitutions than their MATalpha counterparts. Synteny analyses between C. neoformans and F. depauperata showed that genomic regions on other chromosomes displayed conserved gene order. In contrast, the genes linked to the MAT locus of C. neoformans showed a higher number of chromosomal translocations in the genome of F. depauperata. We therefore propose that chromosomal rearrangements appear to be a major force driving speciation and sexual divergence in these closely related pathogenic and saprobic species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The geographic ranges of European plants and animals underwent periods of contraction and re-colonisation during the climatic oscillations of the Pleistocene. The southern Mediterranean peninsulas (Iberian, Italian and Balkan) have been considered the most likely refugia for temperate/warm adapted species. Recent studies however have revealed the existence of extra-Mediterranean refugia, including the existence of cryptic north-west European refugia during the Last Glacial Maxima (24-14.6 kyr BP). In this study we elucidated the phylogeographic history of two sibling bat species, Pipistrellus pipistrellus and P. pygmaeus in their western European range. We sequenced the highly variable mtDNA D-loop for 167 samples of P. pipistrellus (n = 99) and P. pygmaeus (n = 68) and combined our data with published sequences from 331 individuals. Using phylogenetic methodologies we assessed their biogeographic history. Our data support a single eastern European origin for populations of P. pygmaeus s.str., yet multiple splits and origins for populations of P. pipistrellus s.str., including evidence for refugia within refugia and potential cryptic refugia in north western Europe and in the Caucasus. This complex pattern in the distribution of mtDNA haplotypes supports a long history for P. pipistrellus s.str. in Europe, and the hypothesis that species with a broad ecological niche may have adapted and survived outside southern peninsula throughout the LGM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The delimitation of cryptic species within the main vector of the American visceral leishmaniasis, Lutzomyia longipalpis, remains a topic of controversy. An analysis of generic variability based on 8 enzymatic loci revealed fixed differences in 2 diagnostic loci, adenylate kinase (Ak) and hexokinase (Hk), between sympatric and allopatric populations at 4 localities in Venezuela. The absence of heterozygotes for these 2 loci within 1 locality indicates, for the first time, the presence of 2 sympatric reproductively isolated populations or cryptic species within L. longipalpis. Significant differences were also detected between these cryptic species in the allele frequencies of glucose-6-phosphate isomerase (Gpi) and malate dehydrogenase, decarboxylating (Me). One species showed mean heterozygosities that ranged between 6.6% and 6.7%, with 1.6-1.9 alleles detected per locus, while the other had mean heterozygosities that ranged from 4.3% to 6.3%, with 1.3-1.6 alleles per locus. Comparisons of isozyme profiles with published data suggests that 1 species is similar to the L. longipalpis described in Colombian and Brazilian populations, whereas the other has not been previously reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the possibility of reproductive interference between two sibling spider species, Paratrechalea azul and Paratrechalea ornata, which occur syntopically and reproduce synchronously. Males of both species offer a nuptial gift composed of prey wrapped in silk to females. Through laboratory experiments, we evaluated possible asymmetries in the outcome of heterospecific encounters between males and females, and investigated whether chemical signalling could function as a premating barrier between the two species. Males of P. azul were unable to discriminate conspecific from heterospecific female draglines, which resulted in wasted time and energy in nuptial gift construction. Males of P. ornata incurred a higher cost for discrimination mistakes because most of them were attacked by heterospecific females; 95% lost the nuptial gift upon the attack and 33% were preyed upon. This pattern is probably a consequence of differences in body size between males and females of each species. Both species showed erroneous female choice, but only P. ornata females courted heterospecific males, which are considerably larger than conspecific males and may resemble high-quality mating partners. Males of P. ornata also made discrimination mistakes, but at a much lower frequency compared to P. azul males. The selective pressure for precise recognition of conspecific female signs is probably stronger on P. ornata males because misdirected courtship may increase their chances of encountering predatory heterospecific females. This study provides the first detailed evidence of reproductive interference between two reproductively isolated spider species, showing that the costs paid by individuals of different sexes and different species are highly asymmetric. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compared Pundamilia nyererei and Pundamilia pundamilia males in routine metabolic rate (RR ) and in the metabolic costs males pay during territorial interactions (active metabolic rate, RA ). Pundamilia nyererei and P. pundamilia males housed in social isolation did not differ in RR . In contrast to expectation, however, P. nyererei males used less oxygen than P. pundamilia males, for a given mass and level of agonistic activity. This increased metabolic efficiency may be an adaptation to limit the metabolic cost that P. nyererei males pay for their higher rate of aggressiveness compared to P. pundamilia males. Thus, the divergence between the species in agonistic behaviour is correlated with metabolic differentiation. Such concerted divergence in physiology and behaviour might be widespread in the dramatically diverse cichlid radiations in East African lakes and may be an important factor in the remarkably rapid speciation of these fishes. The results did not support the hypothesis that higher metabolic rates caused a physiological cost to P. nyererei males that would offset their dominance advantage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Female mate choice has often been proposed to play an important role in cases of rapid speciation, in particular in the explosively evolved haplochromine cichlid species flocks of the Great Lakes of East Africa. Little, if anything, is known in cichlid radiations about the heritability of female mating preferences. Entirely sympatric distribution, large ecological overlap and conspicuous differences in male nuptial coloration, and female preferences for these, make the sister species Pundamilia pundamilia and P. nyererei from Lake Victoria an ideally suited species pair to test assumptions on the genetics of mating preferences made in models of sympatric speciation. Female mate choice is necessary and sufficient to maintain reproductive isolation between these species, and it is perhaps not unlikely therefore, that female mate choice has been important during speciation. A prerequisite for this, which had remained untested in African cichlid fish, is that variation in female mating preferences is heritable. We investigated mating preferences of females of these sister species and their hybrids to test this assumption of most sympatric speciation models, and to further test the assumption of some models of sympatric speciation by sexual selection that female preference is a single-gene trait. We find that the differences in female mating preferences between the sister species are heritable, possibly with quite high heritabilities, and that few but probably more than one genetic loci contribute to this behavioural speciation trait with no apparent dominance. We discuss these results in the light of speciation models and the debate about the explosive radiation of cichlid fishes in Lake Victoria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sympatrically occurring bat species, the greater mouse-eared bat (Myotis myotis (Borkhausen, 1797)) and the lesser mouse-eared bat (Myotis blythii (Tomes, 1857)) (Chiroptera, Vespertillionidae), share numerous similarities in morphology, roosting behaviour, and echolocation and are often difficult to distinguish. However, despite these similarities, their foraging behaviour is noticeably different. Our aim was to examine the extent to which these different foraging strategies reflect morphological adaptation. We assessed whether the morphology of the wing, body, and tail differed between M. myotis and M. blythii. In addition, in a laboratory experiment involving an obstacle course, we compared differences in manoeuvrability by relating them to our morphological measurements. The two species differed in their overall size, wing-tip shape, and tail-to-body length ratio. The generally smaller sized M. blythii performed better in the obstacle course and was therefore considered to be more manoeuvrable. Although differences in wing-tip shape were observed, we found the most important characteristic affecting manoeuvrability in both species to be the tail-to-body length ratio. Additionally, when we compared two bats with injured wing membranes with unharmed bats of the same species, we found no difference in manoeuvrability, even when the wing shape was asymmetric. We therefore postulate that morphometric differences between the two species in their overall size and, more importantly, in their tail-to-body length ratio are the main physical characteristics providing proof of adaptation to different foraging and feeding strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An FAO/IAEA Co-ordinated Research Project (CRP) on “Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade” was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex – Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex – Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, B. papayae, B. philippinensis and B. invadens, the latter three species were synonymized with B. dorsalis. Of the five target pest taxa studied, only B. dorsalis and B. carambolae remain as scientifically valid names. Molecular and pheromone markers are now available to distinguish B. dorsalis from B. carambolae. Ceratitis FAR Complex (C. fasciventris, C. anonae, C. rosa) – Morphology, morphometry, genetic, genomic, pheromone, cuticular hydrocarbon, ecology, behaviour, and developmental physiology data provide evidence for the existence of five different entities within this fruit fly complex from the African region. These are currently recognised as Ceratitis anonae, C. fasciventris (F1 and F2), C. rosa and a new species related to C. rosa (R2). The biological limits within C. fasciventris (i.e. F1 and F2) are not fully resolved. Microsatellites markers and morphological identification tools for the adult males of the five different FAR entities were developed based on male leg structures. Zeugodacus cucurbitae (formerly Bactrocera (Zeugodacus) cucurbitae) – Genetic variability was studied among melon fly populations throughout its geographic range in Africa and the Asia/Pacific region and found to be limited. Cross-mating studies indicated no incompatibility or sexual isolation. Host preference and genetic studies showed no evidence for the existence of host races. It was concluded that the melon fly does not represent a cryptic species complex, neither with regard to geographic distribution nor to host range. Nevertheless, the higher taxonomic classification under which this species had been placed, by the time the CRP was started, was found to be paraphyletic; as a result the subgenus Zeugodacus was elevated to genus level.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Our purpose was to assess how pairs of sibling horseshoe bats coexists when their morphology and echolocation are almost identical. We collected data on echolocation, wing morphology, diet, and habitat use of sympatric Rhinolophus mehelyi and R. euryale. We compared our results with literature data collected in allopatry with similar protocols and at the same time of the year (breeding season). Results:Echolocation frequencies recorded in sympatry for R. mehelyi (mean = 106.8 kHz) and R. euryale (105.1 kHz) were similar to those reported in allopatry (R. mehelyi 105–111 kHz; R. euryale 101–109 kHz). Wing parameters were larger in R. mehelyi than R. euryale for both sympatric and allopatric conditions. Moths constitute the bulk of the diet of both species in sympatry and allopatry, with minor variation in the amounts of other prey. There were no inter-specific differences in the use of foraging habitats in allopatry in terms of structural complexity, however we found inter-specific differences between sympatric populations: R. mehelyi foraged in less complex habitats. The subtle inter-specific differences in echolocation frequency seems to be unlikely to facilitate dietary niche partitioning; overall divergences observed in diet may be explained as a consequence of differential prey availability among foraging habitats. Inter-specific differences in the use of foraging habitats in sympatry seems to be the main dimension for niche partitioning between R. mehelyi and R. euryale, probably due to letter differences in wing morphology. Conclusions: Coexistence between sympatric sibling horseshoe bats is likely allowed by a displacement in spatial niche dimension, presumably due to the wing morphology of each species, and shifts the niche domains that minimise competition. Effective measures for conservation of sibling/similar horseshoe bats should guarantee structural diversity of foraging habitats.