893 resultados para SHORE CRAB
Resumo:
It is widely assumed that optimal timing of larval release is of major importance to offspring survival, but the extent to which environmental factors entrain synchronous reproductive rhythms in natural populations is not well known. We sampled the broods of ovigerous females of the common shore crab Pachygrapsus transversus at both sheltered and exposed rocky shores interspersed along a so-km coastline, during four different periods, to better assess inter-population differences of larval release timing and to test for the effect of wave action. Shore-specific patterns were consistent through time. Maximum release fell within 1 day around syzygies on all shores, which matched dates of maximum tidal amplitude. Within this very narrow range, populations at exposed shores anticipated hatching compared to those at sheltered areas, possibly due to mechanical stimulation by wave action. Average departures from syzygial release ranged consistently among shores from 2.4 to 3.3 days, but in this case we found no evidence for the effect of wave exposure. Therefore, processes varying at the scale of a few kilometres affect the precision of semilunar timing and may produce differences in the survival of recently hatched larvae. Understanding the underlying mechanisms causing departures from presumed optimal release timing is thus important for a more comprehensive evaluation of reproductive success of invertebrate populations.
Resumo:
The mottled shore crab P. transversus is probably the most common brachyuran crab living in the marine rocky intertidal of southeastern Brazil. However, its biology is largely unknown. In this study, some aspects of the population biology of this species are investigated. Distribution of individuals in the intertidal range is heterogeneous. Sabellariid worm reefs and mytilid mussel beds can be considered as nursery grounds retaining most part of juveniles, while the rocky surface is mostly inhabited by adults, which find safety shelters in rock crevices. Annual size frequency distributions revealed clues of population stability and indicated that young individuals reach the adult habitat in a gradual process. Sex-ratio follows the 1:1 proportion in smaller size classes but is biased towards males in larger ones. Higher mortality in larger females is indicated as a possible cause of this pattern. Ovigerous ratio shows a remarkable seasonality in which highest percentages of ovigerous females occur during summer months, while recruitment of young is more intense from April to July, suggesting a very extensive larval development. Once established in the intertidal zone, young recruits will develop to mature individuals in late spring, when molting crabs become scarce and proportion of breeding females increases. Therefore, growth and reproduction are in a great part temporally separated, allowing an annual life cycle in which settlement, growth and breeding may take place within a I-yr period.
Resumo:
The allometric growth of secondary sexual characters in Pachygrapsus transversus is investigated from the 2(nd) crab stage onward. Clear sexual dimorphism is restricted to abdominal morphology, but ANCOVA analyses showed that chelae become larger in males and the carapace becomes wider in females. Size at the puberty moult in both sexes was estimated using Somerton's computer techniques. Mature II analyses applied to bi-log gonopod length vs, carapace length relationships indicated a puberty moult at 5.0 mm in males.In females, Mature I analyses detected the overlapping growth phase lines in bi-log carapace length vs. abdomen width scatterplots. Fitting the logistic equation provided an estimate of 50% maturity at 5.5 mm. The regression lines separate young and resting individuals from the potentially reproductive females, but they do not separate young from adult crabs. Year-round monthly samples showed that the proportion of small adult-like females is higher during the breeding season. After breeding, females may moult to a young-like morphotype, as observed in controlled laboratory conditions. Moulting to a resting condition splits smaller mature females into different growth phase lines. Therefore, estimates of female size at sexual maturity by means of abdomen allometric growth analyses are inadequate in this species.
Resumo:
Monthly samples of the shore crab Pachygrapsus transversus from two distinct annual periods showed that ovigerous females are present throughout the Year in the population. However, the relative ovigerous abundance of specimens among sexually mature changes from less than 10% during the winter months to almost 80% in summer. Linear correlations for each year revealed that both temperature and photoperiod were positively associated with relative abundance of ovigerous females. Multiple regression analyses suggested that photoperiod was the main factor affecting breeding in this species. Timing of observed reproductive pattern may enhance larval survival because of particular oceanographic conditions in the study region and favor early juvenile development due to certain species-specific growth features.
Resumo:
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine > spermidine > putrescine. Spermidine affected K-0.5 values for Na+ with minor alterations in K-0.5 values for K+ and N-H-4(+), causing a decrease in maximal velocities under saturating Na+, K+ and NH4+ concentrations. Phosphorylation measurements in the presence of 20 mu M ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na+, both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na+, the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na+ at the Na+-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We evaluate hemolymph osmotic and ionic regulatory abilities and characterize a posterior gill microsomal (Na(+), K(+))-ATPase from the marine swimming crab, Callinectes ornatus, acclimated to 21 parts per thousand or 33 parts per thousand salinity. C ornatus is isosmotic after acclimation to 21 parts per thousand but is hyposmotic at 33 parts per thousand salinity; hemolymph ions do not recover initial levels on acclimation to 21 parts per thousand salinity but are anisoionic compared to ambient concentrations, revealing modest regulatory ability. NH(4)(+) modulates enzyme affinity for K(+), which increases 187-fold in crabs acclimated to 33%. salinity. The (Na(+), K(+))-ATPase redistributes into membrane fractions of different densities, suggesting that altered membrane composition results from salinity acclimation. ATP was hydrolyzed at maximum rates of 182.6 +/- 7.1 nmol Pi min(-1) mg(-1) (21 parts per thousand) and 76.2 +/- 3.5 nmol Pi min(-1) mg(-1) (33 parts per thousand), with little change in K(M) values (approximate to 50 mu mol L(-1)). K(+) together with NH(4)(+) synergistically stimulated activity to maximum rates of approximate to 240 nmol Pi min(-1) mg(-1). K, values for ouabain inhibition (approximate to 110 mu mol L(-1)) decreased to 44.9 +/- 1.0 mu mol L(-1) (21 parts per thousand) and 28.8 +/- 1.3 mu mol L(-1) (33 parts per thousand) in the presence of both K(+) and NH(4)(+). Assays employing various inhibitors suggest the presence of mitochondrial F(0)F(1)- and K(+)- and V-ATPase activities in the gill microsomes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This investigation provides an extensive characterization of the modulation by ATP, Mg(2+), Na(+), K(+) and NH(4)(+) of a gill microsomal (Na(+),K(+))-ATPase from Callinectes danae acclimated to 15 parts per thousand salinity. Novel findings are the lack of high-affinity ATP-binding sites and a 10-fold increase in enzyme affinity for K(+) modulated by NH4+, discussed regarding NH4+ excretion in benthic marine crabs. The (Na(+),K(+))-ATPase hydrolyzed ATP at a maximum rate of 298.7 +/- 16.7 nmol Pi min(-1) mg(-1) and K(0.5) = 174.2 +/- 9.8 mmol L(-1) obeying cooperative kinetics (n(H) = 1.2). Stimulation by sodium (V = 308.9 +/- 15.7 nmol Pi min(-1) mg(-1), K(0.5) = 7.8 +/- 0.4 mmol L(-1)), magnesium (299.2 +/- 14.1 nmol Pi min(-1) mg(-1), K(0.5) = 767.3 +/- 36.1 mmol L(-1)), potassium (300.6 +/- 153 nmol Pi min(-1) mg(-1), K(0.5) = 1.6 +/- 0.08 mmol L(-1)) and ammonium (V = 345.1 +/- 19.0 nmol Pi min(-1) mg(-1), K(0.5) = 6.0 +/- 0.3 mmol L(-1)) ions showed site-site interactions. Ouabain inhibited (Na(+),K(+))-ATPase activity with K(1) = 45.1 +/- 2.5 mu mol L(-1), although affinity for the inhibitor increased (K(1) = 22.7 +/- 1.1 mu mol L(-1)) in 50 mmol L(-1) NH(4)(+). Inhibition assays using ouabain plus oligomycin or ethacrynic acid suggest mitochondrial F(0)F(1)- and K(+)-ATPase activities, respectively. Ammonium and potassium ions synergistically stimulated specific activity up to 72%, inferring that these ions bind to different sites on the enzyme molecule, each modulating stimulation by the other. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+), K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (approximate to 14 mu m(2) membrane per mu m(3) cytoplasm), deep invaginations that house the Na(+), K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5 mu m(2) mu m(-2)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6 mu m(2) mu m(-2)), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+), K(+)-ATPase specific activity resembles marine crabs but is approximate to 5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two alpha-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4)(+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water. J. Exp. Zool. 313A:508-523, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Many animals that live in groups maintain competitive relationships, yet avoid continual fighting, by forming dominance hierarchies. We compare predictions of stochastic, individual-based models with empirical experimental evidence using shore crabs to test competing hypotheses regarding hierarchy development. The models test (1) what information individuals use when deciding to fight or retreat, (2) how past experience affects current resource-holding potential, and (3) how individuals deal with changes to the social environment. First, we conclude that crabs assess only their own state and not their opponent's when deciding to fight or retreat. Second, willingness to enter, and performance in, aggressive contests are influenced by previous contest outcomes. Winning increases the likelihood of both fighting and winning future interactions, while losing has the opposite effect. Third, when groups with established dominance hierarchies dissolve and new groups form, individuals reassess their ranks, showing no memory of previous rank or group affiliation. With every change in group composition, individuals fight for their new ranks. This iterative process carries over as groups dissolve and form, which has important implications for the relationship between ability and hierarchy rank. We conclude that dominance hierarchies emerge through an interaction of individual and social factors, and discuss these findings in terms of an underlying mechanism. Overall, our results are consistent with crabs using a cumulative assessment strategy iterated across changes in group composition, in which aggression is constrained by an absolute threshold in energy spent and damage received while fighting.
Resumo:
Insights into the potential for pain may be obtained from examination of behavioural responses to noxious stimuli. In particular, prolonged responses coupled with long-term motivational change and avoidance learning cannot be explained by nociceptive reflex but are consistent with the idea of pain. Here, we placed shore crabs alternately in two halves of a test area divided by an opaque partition. Each area had a dark shelter and in one repeated small electric shocks were delivered in an experimental but not in a control group. Crabs showed no specific avoidance of the shock shelter either during these trials or in a subsequent test in which both were offered simultaneously; however they often emerged from the shock shelter during a trial and thus avoided further shock. More crabs emerged in later trials and took less time to emerge than in early trials. Thus, despite the lack of discrimination learning between the two shelters they used other tactics to markedly reduce the amount of shock received. We note that a previous experiment using simultaneous presentation of two shelters demonstrated rapid discrimination and avoidance learning but the paradigm of sequential presentation appears to prevent this. Nevertheless, the data show clearly that the shock is aversive and tactics, other than discrimination learning, are used to avoid it. Thus, the behaviour is only partially consistent with the idea of pain.
Resumo:
Cadmium is a priority hazardous substance, persistent in the aquatic environment, with the capacity to interfere with crustacean moulting. Moulting is a vital process dictating crustacean growth, reproduction and metamorphosis. However, for many organisms, moult disruption is difficult to evaluate in the short term, what limits its inclusion in monitoring programmes. N-acetyl-β-d-glucosaminidase (NAGase) is an enzyme acting in the final steps of the endocrine-regulated moulting cascade, allowing for the cast off of the old exoskeleton, with potential interest as a biomarker of moult disruption. This study investigated responses to waterborne cadmium of NAGase activity of Carcinus maenas originating from estuaries with different histories of anthropogenic contamination: a low impacted and a moderately polluted one. Crabs from both sites were individually exposed for seven days to cadmium concentrations ranging from 1.3 to 2000 μg/L. At the end of the assays, NAGase activity was assessed in the epidermis and digestive gland. Detoxification, antioxidant, energy production, and oxidative stress biomarkers implicated in cadmium metabolism and tolerance were also assessed to better understand differential NAGase responses: activity of glutathione S-transferases (GST), glutathione peroxidase (GPx) glutathione reductase (GR), levels of total glutathiones (TG), lipid peroxidation (LPO), lactate dehydrogenase (LDH), and NADP+-dependent isocitrate dehydrogenase (IDH). Animals from the moderately polluted estuary had lower NAGase activity both in the epidermis and digestive gland than in the low impacted site. NAGase activity in the epidermis and digestive gland of C. maenas from both estuaries was sensitive to cadmium exposure suggesting its usefulness for inclusion in monitoring programmes. However, in the digestive gland NAGase inhibition was found in crabs from the less impacted site but not in those from the moderately contaminated one. Altered glutathione levels were observed in cadmium-treated crabs from the contaminated site possibly conferring enhanced tolerance to these animals through its chelator action. Investigation of enhanced tolerance should thus be accounted for in monitoring programmes employing NAGase as biomarker to avoid data misinterpretation.
Resumo:
1. The formation of groups is a fundamental aspect of social organization, but there are still many questions regarding how social structure emerges from individuals making non-random associations. 2. Although food distribution and individual phenotypic traits are known to separately influence social organization, this is the first study, to our knowledge, experimentally linking them to demonstrate the importance of their interaction in the emergence of social structure. 3. Using an experimental design in which food distribution was either clumped or dispersed, in combination with individuals that varied in exploratory behaviour, our results show that social structure can be induced in the otherwise non-social European shore crab (Carcinus maenas). 4. Regardless of food distribution, individuals with relatively high exploratory behaviour played an important role in connecting otherwise poorly connected individuals. In comparison, low exploratory individuals aggregated into cohesive, stable subgroups (moving together even when not foraging), but only in tanks where resources were clumped. No such non-foraging subgroups formed in environments where food was evenly dispersed. 5. Body size did not accurately explain an individual's role within the network for either type of food distribution. 6. Because of their synchronized movements and potential to gain social information, groups of low exploratory crabs were more effective than singletons at finding food. 7. Because social structure affects selection, and social structure is shown to be sensitive to the interaction between ecological and behavioural differences among individuals, local selective pressures are likely to reflect this interaction.
Resumo:
Bacterial bioreporters have substantial potential for contaminant assessment but their real world application is currently impaired by a lack of sensitivity. Here, we exploit the bioconcentration of chemicals in the urine of animals to facilitate pollutant detection. The shore crab Carcinus maenas was exposed to the organic contaminant 2-hydroxybiphenyl, and urine was screened using an Escherichia coli-based luciferase gene (luxAB) reporter assay specific to this compound. Bioassay measurements differentiated between the original contaminant and its metabolites, quantifying bioconcentration factors of up to one hundred-fold in crab urine. Our results reveal the substantial potential of using bacterial bioreporter assays in real-time monitoring of biological matricesto determine exposure histories, with wide ranging potential for the in situ measurement of xenobiotics in risk assessments and epidemiology.
Resumo:
Three species of phylogenetically related semi-terrestrial crabs (Superfamily Grapsoidea - Sesarma rectum, Goniopsis cruentata and Neohelice granulata (formerly: Chasmagnathus granulatus) with different degrees of terrestriality were studied to quantify the accumulation of copper (Cu) in hemolymph, gills, hepatopancreas and antennal gland, and its excretion through the faeces. These crabs were fed for 15 days practical diets containing 0 (A), 0.5 (B), 1.0 (C), and 1.5% (D) of added CuCl2 (corresponding to 0, 0.2, 0.5 and 0.7% of Cu2+, respectively). The amount of food ingested was directly proportional to the degree of terrestriality: S. rectum, the most terrestrial species, ate around 2-3 times more than the other crabs, whereas G. cruentata ate 1.5-2 times more than N. granulata, the least terrestrial. The amount of Cu excreted in the feces was proportional to Cu ingestion, and was 76.8% and 64.2% higher for Sesarma fed diet D compared to G. cruentata and N. granulata, respectively. Sesarma also displayed higher Cu concentration in the haemolymph, gills and antennal glands, but not in the hepatopancreas. A detoxifying mechanism followed by elimination was probably present at this last organ, preventing Cu accumulation. More terrestrial crabs, such as Sesarma, may accumulate more Cu in hemolymph and tissues, showing a correlation between metal accumulation and increased terrestriality. In this aspect, contaminated feed sources with Cu may have more impact in conservation of terrestrial crabs. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Settlement is a critical process in the life history of crabs, and thus affecting the abundance, distribution and structure of estuarine communities. The spatial pattern of settlement of megalopae of the shore crab Carcinus maenas along a longitudinal estuarine gradient (Mira River Estuary, Portugal) was examined, as well as its effects on the juvenile population. To measure megalopal settlement, four replicate collectors were deployed in six equally spaced stations along the estuarine axis. Juveniles were collected on the same locations with a quadrat randomly deployed on the substrate. To assess fine-scale megalopal settlement within a curved region of the estuary, replicate collectors were deployed on both margins along Moinho da Asneira curve. Megalopae settled differently along the six longitudinal points, with a tendency to attenuate their settlement upstream. Within the curved region, megalopae preferentially settled on the left margin collectors, probably due to the weaker velocity speeds felt on this margin. Concerning the overall juvenile density, there were significant differences among the stations distributed along the estuary, but they did no reflect a longitudinal dispersion attenuation pattern. Size-frequency distribution of the juvenile population showed that the average size is higher on the left margin. Recruits (carapace length between 1.0 mm and 3.4 mm) were more abundant on the upstream stations. Density of early juveniles (3.4 mm-6.5 mm) and juveniles (6.5 mm-10 mm) was more stable throughout the estuary axis than that of recruits. This distribution pattern may result from tidal excursion processes or mechanisms to avoid biotic interactions, such as predation and competition. (c) 2006 Elsevier Ltd. All rights reserved.