998 resultados para SHELL SIZE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present measurements of the maximum diameter of the planktonic foraminifer Neogloboquadrina pachyderma sin. from six sediment cores (Ocean Drilling Program sites 643, 644, 907, 909, 985 and 987) from the Norwegian-Greenland Sea. Our data show a distinct net increase in mean shell size of N. pachyderma sin. at all sites during the last 1.3 Ma, with largest shell sizes reached after 0.4 Ma. External factors such as glacial-interglacial variability and carbonate dissolution alone cannot account for the observed variation in mean shell size of N. pachyderma sin. We consider the observed shell size increase to mirror an evolutionary trend towards better adaptation of N. pachyderma sin. to the cold water environment after 1.1-1.0 Ma. Probably, the Mid Pleistocene climate shift and the associated change of amplitude and frequency of glacial-interglacial fluctuations have triggered the evolution of this planktonic foraminifer. Oxygen and carbon stable isotope analyses of different shell size classes indicate that the observed shell size increase could not be explained by the functional concept that larger shells promote increasing sinking velocities during gametogenesis. For paleoceanographic reconstructions, the evolutionary adaptation of Neogloboquadrina pachyderma sin. to the cold water habitat has significant implications. Carbonate sedimentation in highest latitudes is highly dependent on the presence of this species. In the Norwegian-Greenland Sea, carbonate-poor intervals before 1.1 Ma are, therefore, not necessarily related to severe glacial conditions. They are probably attributed to the absence of this not yet polar-adapted species. Further, transfer function and modern analog techniques used for the reconstruction of surface water conditions in high latitudes could, therefore, contain a large range of errors if they were applied to samples older than 1.1-1.0 Myrs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the effects of ocean acidification and temperature increase on Neogloboquadrina pachyderma (sinistral), the dominant planktonic foraminifer in the Arctic Ocean. Due to the naturally low concentration of [CO3] 2- in the Arctic, this foraminifer could be particularly sensitive to the forecast changes in seawater carbonate chemistry. To assess potential responses to ocean acidification and climate change, perturbation experiments were performed on juvenile and adult specimens by manipulating seawater to mimic the present-day carbon dioxide level and a future ocean acidification scenario (end of the century) under controlled (in situ) and elevated temperatures (1 and 4 °C, respectively). Foraminifera mortality was unaffected under all the different experiment treatments. Under low pH, N. pachyderma (s) shell net calcification rates decreased. This decrease was higher (30 %) in the juvenile specimens than decrease observed in the adults (21 %) ones. However, decrease in net calcification was moderated when both, pH decreased and temperature increased simultaneously. When only temperature increased, a net calcification rate for both life stages was not affected. These results show that forecast changes in seawater chemistry would impact calcite production in N. pachyderma (s), possibly leading to a reduction of calcite flux contribution and consequently a decrease in biologic pump efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine invertebrates with open circulatory system establish low and constant oxygen partial pressure (Po2) around their tissues. We hypothesized that as a first step towards maintenance of low haemolymph and tissue oxygenation, the Po2 in molluscan mantle cavity water should be lowered against normoxic (21 kPa) seawater Po2, but balanced high enough to meet the energetic requirements in a given species. We recorded Po2 in mantle cavity water of five molluscan species with different lifestyles, two pectinids (Aequipecten opercularis, Pecten maximus), two mud clams (Arctica islandica, Mya arenaria), and a limpet (Patella vulgata). All species maintain mantle cavity water oxygenation below normoxic Po2. Average mantle cavity water Po2 correlates positively with standard metabolic rate (SMR): highest in scallops and lowest in mud clams. Scallops show typical Po2 frequency distribution, with peaks between 3 and 10 kPa, whereas mud clams and limpets maintain mantle water Po2 mostly <5 kPa. Only A. islandica and P. vulgata display distinguishable temporal patterns in Po2 time series. Adjustment of mantle cavity Po2 to lower than ambient levels through controlled pumping prevents high oxygen gradients between bivalve tissues and surrounding fluid, limiting oxygen flux across the body surface. The patterns of Po2 in mantle cavity water correspond to molluscan ecotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide threatens to decrease pH in the world's oceans. Coastal and estuarine calcifying organisms of significant ecological and economical importance are at risk; however, several biogeochemical processes drive pH in these habitats. In particular, coastal and estuarine sediments are frequently undersaturated with respect to calcium carbonate due to high rates of organic matter remineralization, even when overlying waters are saturated. As a result, the post-larval stages of infaunal marine bivalves must be able to deposit new shell material in conditions that are corrosive to shell. We measured calcification rates on the hard clam, Mercenaria spp.,in 5 post-larval size classes (0.39, 0.56, 0.78, 0.98, and 2.90 mm shell height) using the alkalinity anomaly method. Acidity of experimental water was controlled by bubbling with air-CO2 blends to obtain pH values of 8.02, 7.64, and 7.41, corresponding to pCO2 values of 424, 1120, and 1950 µatm. These pH values are typical of those found in many near-shore terrigenous marine sediments. Our results show that calcification rate decreased with lower pH in all 5 size classes measured. We also found a significant effect of size on calcification rate, with the smaller post-larval sizes unable to overcome dissolution pressure. Increased calcification rate with size allowed the larger sizes to overcome dissolution pressure and deposit new shell material under corrosive conditions. Size dependency of pH effects on calcification is likely due to organogenesis and developmental shifts in shell mineralogy occurring through the post-larval stage. Furthermore, we found significantly different calcification rates between the 2 sources of hard clams we used for these experiments, most likely due to genotypic differences. Our findings confirm the susceptibility of the early life stages of this important bivalve to decreasing pH and reveal mechanisms behind the increased mortality in post-larval juvenile hard clams related to dissolution pressure, that has been found in previous studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shell selection by the hermit crab Paguristes tortugae Schmitt, 1933 from Anchieta Island (Brazil) was analyzed using the six most frequently occupied shell species in the field and taking into account the sexual condition of the individuals, the shell size and the shell species. The experiments were conducted under laboratory conditions and the shell species preference was estimated on the basis of the frequency that each species was chosen by the individuals. The preferred shell species and size were determined by regression analysis. The highest correlation coefficients were obtained for the relations between the hermit dimensions and shell dry weight. The ovigerous females preferred shells with larger internal volume: Leucozonia nassa (Gmelin, 1791) and Cerithium atratum (Born, 1778). In the experiment of shell size, males preferred heavier shells whereas females selected the shape characteristics of the shell, such as the aperture and the internal volume, which are probably related to the growth and offspring guarantee, respectively. In general, and independent of sex condition, P. tortugae showed significant selection among all shells utilized. The results suggest that shell selection by P. tortugae involves sexual and reproductive condition preferences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We evaluated the gastropod shell utilization pattern of the hermit crab Clibanarius vittatus (Bosc, 1802) at Pescadores Beach in São Vicente, State of São Paulo, Brazil. Specimens were collected monthly from May 2001 through April 2003, in the intertidal zone at low tide. The crabs were weighed and their carapace shield length measured. All gastropod shells were identified and had their shell biometric parameters (total length and aperture length) measured (mm) and weighed (g). A total of 2,344 hermit crabs (644 males, 1,594 females, 45 ovigerous females and 61 individuals in intersex), using 13 species of gastropod shells, were collected. Stramonita haemastoma (Linnaeus, 1767), Cymatium parthenopeum (Von Salis, 1793) and Achatina fulica (Bowdich, 1822) comprised over 98% of all the shells. Male and intersex crabs were significantly larger than the females. This size difference strongly influenced the shell utilization pattern, principally in A. fulica, which has the largest shell size, that was only used by males and intersexual individuals of C. vittatus. Cymatium parthenopeum was the only shell species that showed a high determinant coefficient in all the biometric correlations evaluated. The high abundance of S. haemastoma shells and a strong correlation between crab size and shell aperture length established by a significant determination coefficient, indicated that C. vittatus uses this species as the principal resource for shell occupation at Pescadores Beach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O objetivo do presente estudo foi avaliar a utilização de conchas de gastrópodes por Clibanarius vittatus (Bosc, 1802), na Praia dos Pescadores, em São Vicente (SP), Brasil. Foram realizadas amostras mensais no período de maio de 2001 a abril de 2003, na região intertidal durante a maré baixa. Todos os animais foram pesados e tiveram o comprimento de seu escudo cefalotorácico mensurados, suas conchas identificadas e medidas quanto ao comprimento (mm), abertura (mm) e peso (g). Capturamos 2.344 ermitões (644 machos, 1.594 fêmeas não-ovígeras, 45 fêmeas ovígeras e 61 em intersexo), utilizando 13 espécies de conchas de gastrópodes, das quais Stramonita haemastoma (Linnaeus, 1767), Cymatium parthenopeum (Von Salis, 1793) e Achatina fulica (Bowdich, 1822) representaram mais de 98% das conchas utilizadas. Obteve-se significativa diferença de tamanho entre os sexos, com machos e indivíduos em intersexo atingindo maior porte físico do que fêmeas. Este padrão influenciou fortemente na ocupação e utilização de conchas, principalmente em A. fulica, que foi a maior concha obtida por C. vittatus, utilizada somente por machos e indivíduos em intersexo. Cymatium parthenopeum foi a única espécie de concha em que se obtiveram elevados coeficientes de determinação para todas os parâmetros analisados. Stramonita haemastoma apresentou elevados e significativos coeficientes de determinação, indicando que esta espécie é o principal recurso de concha ocupada na Praia dos Pescadores.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A populational sample of Isocheles sawayai Forest & Saint Laurent, 1967 was analysed in order to detect the validity of the shell aperture size as a parameter in the gastropod shell selection. The gastropods genus occupied by this hermit crab were: Thais, Buccinanops, Olivancillaria, Polinices and Cymatium. The power function (y = a.x(b)) was the best equation to represent biologically the regression analyses carried out among the measured parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The variability in size and shape of shells of the polar planktonic foraminifer Neogloboquadrina pachyderma have been quantified in 33 recent surface sediment samples throughout the northern Atlantic Ocean and correlated with the properties of the ambient surface waters. The aim of the study was to determine whether any of the morphological features could be used to reconstruct sea surface properties in the polar realm of the North Atlantic, where most paleotemperature proxies appear to fail. The analyses revealed that shell morphology is only weakly controlled by habitat properties, whereas shell size showed a strong correlation with sea surface temperature. The regression of mean shell size on sea surface temperature revealed the presence of two trends among the sinistrally coiled shells: a continuous increase in shell size with decreasing SST in sediments deposited under polar water masses and a continuous increase in shell size with increasing SST in samples from transitional waters. The second trend mirrors the trend observed for dextrally coiled shells, which are frequent in the same samples and signal the presence of N. incompta. The identical mean shell size trends among the sinistral and dextral specimens in the temperate samples confirms the results of earlier genetic studies which indicated the existence of a small but distinct proportion of opposite coiling in N. incompta, to which the sinistral shells in the temperate samples could be attributed. The linear correlation between mean shell size and sea surface temperature in the polar domain (summer SST < 9 °C) has been used to develop an empirical formula for the reconstruction of past sea surface temperatures from shell sizes in fossil samples. The standard error of the residuals of the linear regression is 2.36 °C (1 sigma), which implies a much larger error than for most paleothermometers, but enough precision to allow resolution between results by individual paleothermometers in the polar domain. The resulting regression model has been applied on two sediment cores spanning the interval from the Last Glacial Maximum (LGM) to the present day. The results from core PS1906-1 are consistent with ice-free conditions during the LGM in the Norwegian Sea. The SST estimates for the LGM inferred from N. pachyderma shell size are similar or slightly higher than those for the latest Holocene. The results do not indicate anomalously high SST during the glacial and the LGM reconstructions thus appear more consistent with the results from foraminiferal transfer functions and geochemical proxies. Both sediment cores show the highest reconstructed SST during the early Holocene insolation optimum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To investigate shell size variation among gastropod faunas of fossil and recent long-lived European lakes and discuss potential underlying processes. Location: 23 long-lived lakes of the Miocene to Recent of Europe. Methods: Based on a dataset of 1412 species of both fossil and extant lacustrine gastropods, we assessed differences in shell size in terms of characteristics of the faunas (species richness, degree of endemism, differences in family composition) and the lakes (surface area, latitude and longitude of lake centroid, distance to closest neighbouring lake) using multiple and linear regression models. Because of a strong species-area relationship, we used resampling to determine whether any observed correlation is driven by that relationship. Results: The regression models indicated size range expansion rather than unidirectional increase or decrease as the dominant pattern of size evolution. The multiple regression models for size range and maximum and minimum size were statistically significant, while the model with mean size was not. Individual contributions and linear regressions indicated species richness and lake surface area as best predictors for size changes. Resampling analysis revealed no significant effects of species richness on the observed patterns. The correlations are comparable across families of different size classes, suggesting a general pattern. Main conclusions: Among the chosen variables, species richness and lake surface area are the most robust predictors of shell size in long-lived lake gastropods. Although the most outstanding and attractive examples for size evolution in lacustrine gastropods derive from lakes with extensive durations, shell size appears to be independent of the duration of the lake as well as longevity of a species. The analogue of long-lived lakes as 'evolutionary islands' does not hold for developments of shell size because different sets of parameters predict size changes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increasing levels of anthropogenic carbon dioxide in the world's oceans are resulting in a decrease in the availability of carbonate ions and a drop in seawater pH. This process, known as ocean acidification, is a potential threat to marine populations via alterations in survival and development. To date, however, little research has examined the effects of ocean acidification on rare or endangered species. To begin to assess the impacts of acidification on endangered northern abalone (Haliotis kamtschatkana) populations, we exposed H. kamtschatkana larvae to various levels of CO2 [400 ppm (ambient), 800 ppm, and 1800 ppm CO2] and measured survival, settlement, shell size, and shell development. Larval survival decreased by ca. 40% in elevated CO2 treatments relative to the 400 ppm control. However, CO2 had no effect on the proportion of surviving larvae that metamorphosed at the end of the experiment. Larval shell abnormalities became apparent in approximately 40% of larvae reared at 800 ppm CO2, and almost all larvae reared at 1800 ppm CO2 either developed an abnormal shell or lacked a shell completely. Of the larvae that did not show shell abnormalities, shell size was reduced by 5% at 800 ppm compared to the control. Overall, larval development of H. kamtschatkana was found to be sensitive to ocean acidification. Near future levels of CO2 will likely pose a significant additional threat to this species, which is already endangered with extinction due in part to limited reproductive output and larval recruitment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using shells collected from a sediment trap series in the Madeira Basin, we investigate the effects of seasonal variation of temperature, productivity, and optimum growth conditions on calcification in three species of planktonic Foraminifera. The series covers an entire seasonal cycle and reflects conditions at the edge of the distribution of the studied species, manifesting more suitable growth conditions during different parts of the year. The seasonal variation in seawater carbonate saturation at the studied site is negligible compared to other oceanic regions, allowing us to assess the effect of parameters other than carbonate saturation. Shell calcification is quantified using weight and size of individual shells. The size-weight scaling within each species is robust against changes in environmental parameters, but differs among species. An analysis of the variation in calcification intensity (size-normalized weight) reveals species-specific response patterns. In Globigerinoides ruber (white) and Globigerinoides elongatus, calcification intensity is correlated with temperature (positive) and productivity (negative), whilst in Globigerina bulloides no environmental forcing is observed. The size-weight scaling, calcification intensity, and response of calcification intensity to environmental change differed between G. ruber (white) and G. elongatus, implying that patterns extracted from pooled analyses of these species may reflect their changing proportions in the samples. Using shell flux as a measure of optimum growth conditions, we observe significant positive correlation with calcification intensity in G. elongatus, but negative correlation in G. bulloides. The lack of a consistent response of calcification intensity to optimum growth conditions is mirrored by the results of shell size analyses. We conclude that calcification intensity in planktonic Foraminifera is affected by factors other than carbonate saturation. These factors include temperature, productivity, and optimum growth conditions, but the strength and sign of the relationships differ among species, potentially complicating interpretations of calcification data from the fossil record.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age-related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size-dependent sex change was indicated by L50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0–15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex-change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age-related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size-dependent sex change was indicated by L50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0–15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex-change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.