956 resultados para SHEAR-LAG


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Debonding of Shape Memory Alloy (SMA) wires in SMA reinforced polymer matrix composites is a complex phenomenon compared to other fabric fiber debonding in similar matrix composites. This paper focuses on experimental study and analytical correlation of stress required for debonding of thermal SMA actuator wire reinforced composites. Fiber pull-out tests are carried out on thermal SMA actuator at parent state to understand the effect of stress induced detwinned martensites. An ASTM standard is followed as benchmark method for fiber pull-out test. Debonding stress is derived with the help of non-local shear-lag theory applied to elasto-plastic interface. Furthermore, experimental investigations are carried out to study the effect of Laser shot peening on SMA surface to improve the interfacial strength. Variation in debonding stress due to length of SMA wire reinforced in epoxy are investigated for non-peened and peened SMA wires. Experimental results of interfacial strength variation due to various L/d ratio for non-peened and peened SMA actuator wires in epoxy matrix are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interfacial properties of Shape Memory Alloy (SMA) reinforced polymer matrix composites can be enhanced by improving the interfacial bonding. This paper focuses on studying the interfacial stresses developed in the SMA-epoxy interface due to various laser shot penning conditions. Fiber-pull test-setup is designed to understand the role of mechanical bias stress cycling and thermal actuation cycling. Phase transformation is tracked over mechanical and thermal fatigue cycles. A micromechanics based model developed earlier based on shear lag in SMA and energy based consistent homogenization is extended here to incorporate the stress-temperature phase diagram parameters for modeling fatigue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On the basis of the well-known shear-lag analysis of fibre/matrix interface stresses and the assumption of identical axial strains in the fibre and matrix, a new model for predicting the energy release rate of interfacial fracture of the fibre pull-out test model is attempted. The expressions for stresses in the fibre, matrix and interface are derived. The formula for interfacial debonding energy release rate is given. Numerical calculations are conducted and the results obtained are compared with those of the existing models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present research, microstructure of a kind of limnetic shell (Hyriopsis cumingii) is observed and measured by using the scanning electron microscopy, and mechanical behavior experiments of the shell nacre are carried out by using bending and tensile tests. The dependence of mechanical properties of the shell nacre on its microstructure is analyzed by using a modified shear-lag model, and the overall stress-strain relation is obtained. The experimental results reveal that the mechanical properties of shell nacre strongly depend on the water contents of the limnetic shell. Dry nacre shows a brittle behavior, whereas wetting nacre displays a strong ductility. Compared to the tensile test, the bending test overestimates the strength and underestimates the Young's modulus. The modified shear-lag model can characterize the deformation features of nacre effectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials. The relationship between the overall effective modulus and the number of hierarchy level is obtained. The result is compared with that based on the tension-shear chain model and finite element simulation, respectively. It is shown that all three models can be used to describe the mechanical behavior of the hierarchical material when the number of hierarchy levels is small. By increasing the number of hierarchy level, the shear-lag result is consistent with the finite element result. However the tension-shear chain model leads to an opposite trend. The transition point position depends on the fraction of hard phase, aspect ratio and modulus ratio of hard phase to soft phase. Further discussion is performed on the flaw tolerance size and strength of hierarchical materials based on the shear-lag analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because of the load transfer effect of interface layer, the stress distribution inside the composite structure of film/substrate can be very different from the Timoshenko's model. In this paper, we give the derivation and analysis of such load transfer effect of shear-lag (S-L) model. The micro-structure size (boundary conditions) effect together with interface load transfer effect becomes more and more important as the microstructure size including the three dimensions of thickness, width and length shrinks. The microstructure size is also responsible for the so-called edge-induced stress. The edge effect and difference of S-L model and Timoshenko model are also demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects was studied via a Monte Carlo technique combined with a finite element method. A finite element model was constructed to predict the effects of various matrix defect shapes on the stress distributions. The results indicated that a small matrix defect had almost no effect on fiber stress distributions other than interfacial shear stress distributions. Then, a finite element model with a statistical distribution of the fiber strength was constructed to investigate the influences of the spatial distribution and the volume fraction of matrix defects on composite failure. The results showed that it was accurate to use the shear-lag models and Green's function methods to predict the tensile strength of composites even though the axial stresses in the matrix were neglected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To simulate the deformation and the fracture of gradual multi-fiber-reinforced matrix composites, a numerical simulation method for the mesoscopic mechanical behaviors was developed on the basis of the finite element and the Monte Carlo methods. The results indicate that the strength of a composite increases if the variability of statistical fiber strengths is decreased.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stress transfer from broken fibers to unbroken fibers in fiber-reinforced thermosetting polymer-matrix composites and thermoplastic polymer-matrix composites was studied using a detailed finite element model. In order to check the validity of this approach, an epoxy-matrix monolayer composite was used as thermosetting polymer-matrix composite and a polypropylene (PP)-matrix monolayer composite was used as thermoplastic polymer-matrix composite, respectively. It is found that the stress concentrations near the broken fiber element cause damage to the neighboring epoxy matrix prior to the breakage of other fibers, whereas in the case of PP-matrix composites the fibers nearest to the broken fiber break prior to the PP matrix damage, because the PP matrix around the broken fiber element yields. In order to simulate composite damage evolution, a Monte Carlo technique based on a finite element method has been developed in the paper. The finite element code coupled with statistical model of fiber strength specifically written for this problem was used to determine the stress redistribution. Five hundred samples of numerical simulation were carried out to obtain statistical deformation and failure process of composites with fixed fiber volume fraction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deformability is often a crucial to the conception of many civil-engineering structural elements. Also, design is all the more burdensome if both long- and short-term deformability has to be considered. In this thesis, long- and short-term deformability has been studied from the material and the structural modelling point of view. Moreover, two materials have been handled: pultruded composites and concrete. A new finite element model for thin-walled beams has been introduced. As a main assumption, cross-sections rigid are considered rigid in their plane; this hypothesis replaces that of the classical beam theory of plane cross-sections in the deformed state. That also allows reducing the total number of degrees of freedom, and therefore making analysis faster compared with twodimensional finite elements. Longitudinal direction warping is left free, allowing describing phenomena such as the shear lag. The new finite-element model has been first applied to concrete thin-walled beams (such as roof high span girders or bridge girders) subject to instantaneous service loadings. Concrete in his cracked state has been considered through a smeared crack model for beams under bending. At a second stage, the FE-model has been extended to the viscoelastic field and applied to pultruded composite beams under sustained loadings. The generalized Maxwell model has been adopted. As far as materials are concerned, long-term creep tests have been carried out on pultruded specimens. Both tension and shear tests have been executed. Some specimen has been strengthened with carbon fibre plies to reduce short- and long- term deformability. Tests have been done in a climate room and specimens kept 2 years under constant load in time. As for concrete, a model for tertiary creep has been proposed. The basic idea is to couple the UMLV linear creep model with a damage model in order to describe nonlinearity. An effective strain tensor, weighting the total and the elasto-damaged strain tensors, controls damage evolution through the damage loading function. Creep strains are related to the effective stresses (defined by damage models) and so associated to the intact material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To compare the biomechanical properties of a ventral transarticular lag screw fixation technique, a new dorsal atlantoaxial instability (AAI) clamp, and a new ventral AAI hook plate under sagittal shear loading after transection of the ligaments of the atlantoaxial joint. STUDY DESIGN: Cadaveric biomechanical study. ANIMALS: Canine cadavers (n = 10). MATERIALS AND METHODS: The occipitoatlantoaxial region of Beagles euthanatized for reasons unrelated to the study was prepared leaving only ligamentous structures and the joint capsules between the first 2 cervical vertebrae (C1 and C2). The atlanto-occipital joints were stabilized with 2 transarticular diverging positive threaded K-wires. The occipital bone and the caudal end of C2 were embedded in polymethylmethacrylate and loaded in shear to a force of 50 Newtons. The range of motion (ROM) and neutral zone (NZ) of the atlantoaxial joint were determined after 3 loading cycles with atlantoaxial ligaments intact, after ligament transection, and after fixation with each implant. The testing order of implants was randomly assigned. The implants tested last were subjected to failure testing. RESULTS: All stabilization procedures decreased the ROM and NZ of the atlantoaxial joint compared to transected ligament specimens. Only stabilization with transarticular lag screws and ventral plates produced a significant reduction of ROM compare to intact specimens. CONCLUSION: Fixation with transarticular lag screws and a ventral hook plate was biomechanically similar and provided more rigidity compared to dorsal clamp fixation. Further load cycling to failure tests and clinical studies are required before making clinical recommendations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the details of experimental studies on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB). The LSB section has a unique shape of a channel beam with two rectangular hollow flanges and is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. To date, no research has been undertaken on the shear behaviour of LiteSteel beams with torsionally rigid, rectangular hollow flanges. In the present investigation, experimental studies involving more than 30 shear tests were carried out to investigate the shear behaviour of 13 different LSB sections. It was found that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LiteSteel beams. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Experimental results are presented and compared with corresponding predictions from the current design codes in this paper. Appropriate improvements have been proposed for the shear strength of LSBs based on AS/NZS 4600 design equations.