887 resultados para SEMIPARAMETRIC REGRESSION-MODELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild (1999) under two-phase sampling designs. We show that the maximum likelihood estimators for both the parametric and nonparametric parts of the model are asymptotically normal and efficient. The efficient influence function for the parametric part aggress with the more general information bound calculations of Robins, Hsieh, and Newey (1995). By verifying the conditions of Murphy and Van der Vaart (2000) for a least favorable parametric submodel, we provide asymptotic justification for statistical inference based on profile likelihood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops a semiparametric estimation approach for mixed count regression models based on series expansion for the unknown density of the unobserved heterogeneity. We use the generalized Laguerre series expansion around a gamma baseline density to model unobserved heterogeneity in a Poisson mixture model. We establish the consistency of the estimator and present a computational strategy to implement the proposed estimation techniques in the standard count model as well as in truncated, censored, and zero-inflated count regression models. Monte Carlo evidence shows that the finite sample behavior of the estimator is quite good. The paper applies the method to a model of individual shopping behavior. © 1999 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a root-n consistent, asymptotically normal weighted least squares estimator of the coefficients in a truncated regression model. The distribution of the errors is unknown and permits general forms of unknown heteroskedasticity. Also provided is an instrumental variables based two-stage least squares estimator for this model, which can be used when some regressors are endogenous, mismeasured, or otherwise correlated with the errors. A simulation study indicates that the new estimators perform well in finite samples. Our limiting distribution theory includes a new asymptotic trimming result addressing the boundary bias in first-stage density estimation without knowledge of the support boundary. © 2007 Cambridge University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar [Ann. Statist. 15(3) (1987) 1131–1154]. The idea is to generate a random finite subset of a parameter space which will automatically contain points which are very close to an unknown true parameter. The motivation for this procedure comes from recent work of Dümbgen et al. [Ann. Statist. 39(2) (2011) 702–730] on regression models with log-concave error distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this review paper we collect several results about copula-based models, especially concerning regression models, by focusing on some insurance applications. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we extend semiparametric mixed linear models with normal errors to elliptical errors in order to permit distributions with heavier and lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum penalized likelihood estimates (MPLEs) which appear to be robust against outlying observations in the sense of the Mahalanobis distance. A reweighed iterative process based on the back-fitting method is proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to study the sensitivity of the MPLEs. Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various inference procedures for linear regression models with censored failure times have been studied extensively. Recent developments on efficient algorithms to implement these procedures enhance the practical usage of such models in survival analysis. In this article, we present robust inferences for certain covariate effects on the failure time in the presence of "nuisance" confounders under a semiparametric, partial linear regression setting. Specifically, the estimation procedures for the regression coefficients of interest are derived from a working linear model and are valid even when the function of the confounders in the model is not correctly specified. The new proposals are illustrated with two examples and their validity for cases with practical sample sizes is demonstrated via a simulation study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important aspect of robotic path planning for is ensuring that the vehicle is in the best location to collect the data necessary for the problem at hand. Given that features of interest are dynamic and move with oceanic currents, vehicle speed is an important factor in any planning exercises to ensure vehicles are at the right place at the right time. Here, we examine different Gaussian process models to find a suitable predictive kinematic model that enable the speed of an underactuated, autonomous surface vehicle to be accurately predicted given a set of input environmental parameters.