901 resultados para SEMICONDUCTOR-POLYMER COMPOSITES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work it is demonstrated that the capacitance between two cylinders increases with the rotation angle and it has a fundamental influence on the composite dielectric constant. The dielectric constant is lower for nematic materials than for isotropic ones and this can be attributed to the effect of the filler alignment in the capacitance. The effect of aspect ratio in the conductivity is also studied in this work. Finally, based on previous work and by comparing to results from the literature it is found that the electrical conductivity in this type of composites is due to hopping between nearest fillers resulting in a weak disorder regime that is similar to the single junction expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work focuses on the use of the life cycle assessment (LCA) and life cycle costing (LCC)methodologies to evaluate environmental and economic impacts of polymers and polymer composites materials and products. Initially a literature review is performed in order to assess the scope and limitations of existing LCA and LCC studies on these topics. Then, a case study, based on the production of a water storage glass-fibre reinforced polymer (GFRP) composite storage tank, is presented. The storage tank was evaluated via a LCA/LCC integrated model, a novel way of analysing the life cycle (LC) environmental and economic performances of structural products. The overarching conclusion of the review is that the environmental and economic performances of polymers composites in non-mobile applications are seldom assessed and never in a combined integrated way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In lithium ion battery systems, the separator plays a key role with respect to device performance. Polymer composites and polymer blends have been frequently used as battery separators due to their suitable properties. This review presents the main issues, developments and characteristics of these polymer composites and blends for battery separator membrane applications. This review is divided into two sections regarding the composition of the materials: polymer composite materials, subdivided according to filler type, and polymer blend materials. For each category the electrolyte solutions, ionic conductivity and other relevant physical-chemical characteristics are described. This review shows the recent advances and opportunities in this area and identifies future trends and challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Papper kan anses vara ett av de mest använda materialen i det dagliga livet. Tidskrifter, tidningar, böcker och diverse förpackningar är några exempel på pappersbaserade produkter. Papperets egenskaper måste anpassas till användningsändamålet. En tidskrift kräver t.ex. hög ljushet, opacitet och en slät yta hos papperet, medan dessa egenskaper är mindre viktiga för en dagstidning. Allt tryckpapper behöver vissa mekaniska egenskaper för att tåla vidarebearbetning såsom kalandrering, tryckning och vikning. Man kan bestryka papper för att förbättra dess optiska egenskaper och tryckbarhetsegenskaper. Vid bestrykning appliceras en dispersion av mineralpigment och polymerbindemedel som ett tunt lager på papperets yta. Bestrykningsskiktet kan ses som ett komplext, poröst kompositmaterial som även bidrar till papperets mekaniska egenskaper och dess processerbarhet i diverse konverteringsoperationer. Kravet på framställning av förmånligt papper med tillräckliga styrkeegenskaper ställer allt högre krav på optimeringen av pappersbestrykningsskiktets egenskaper och produktionskostnader. Målet med detta arbete var att förstå sambandet mellan pigmentbestrykningsskiktets mikrostruktur och dess makroskopiska, mekaniska egenskaper. Resultaten visar att adhesionen i gränsytan mellan pigment och bindemedel är kritisk för bestrykningsskiktets förmåga att bära mekanisk belastning. Polära vätskor är vanliga i tryckfärger och kan, eftersom de påverkar syra/bas-interaktionerna mellan pigment och latexbindemedel, försvaga denna adhesion. Resultaten tyder på att ytstyrkan hos bestruket papper kan höjas genom användning av bifunktionella dispergeringsmedel för mineralpigment. Detta medför inbesparingar i pappersproduktionen eftersom mängden bindemedel, den dyraste komponenten i bestrykningsskiktet, kan minskas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microwave and electrical applications of some important conducting polymers are analyzed in this investigation.One of the major drawbacks of conducting polymers is their poor processability,and a solution to overcome this is sought in this investigation.Conducting polymer thermoplastic composites were prepared by the insitu polymerization method to improve the extent of miscibility probably to a semi IPN level.The attractive features of the conducting composite developed are excellent processability,good microwave and electrical conductivity,good microwave absorption,load sensitivity and satisfactory mechanical properties.The composite shows typical frequency selective microwave absorption and refelection behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The release of growth factors from tissue engineering scaffolds provides signals that influence the migration, differentiation, and proliferation of cells. The incorporation of a drug delivery platform that is capable of tunable release will give tissue engineers greater versatility in the direction of tissue regeneration. We have prepared a novel composite of two biomaterials with proven track records - apatite and poly(lactic-co-glycolic acid) (PLGA) – as a drug delivery platform with promising controlled release properties. These composites have been tested in the delivery of a model protein, bovine serum albumin (BSA), as well as therapeutic proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and rhBMP-6. The controlled release strategy is based on the use of a polymer with acidic degradation products to control the dissolution of the basic apatitic component, resulting in protein release. Therefore, any parameter that affects either polymer degradation or apatite dissolution can be used to control protein release. We have modified the protein release profile systematically by varying the polymer molecular weight, polymer hydrophobicity, apatite loading, apatite particle size, and other material and processing parameters. Biologically active rhBMP-2 was released from these composite microparticles over 100 days, in contrast to conventional collagen sponge carriers, which were depleted in approximately 2 weeks. The released rhBMP-2 was able to induce elevated alkaline phosphatase and osteocalcin expression in pluripotent murine embryonic fibroblasts. To augment tissue engineering scaffolds with tunable and sustained protein release capabilities, these composite microparticles can be dispersed in the scaffolds in different combinations to obtain a superposition of the release profiles. We have loaded rhBMP-2 into composite microparticles with a fast release profile, and rhBMP-6 into slow-releasing composite microparticles. An equi-mixture of these two sets of composite particles was then injected into a collagen sponge, allowing for dual release of the proteins from the collagenous scaffold. The ability of these BMP-loaded scaffolds to induce osteoblastic differentiation in vitro and ectopic bone formation in a rat model is being investigated. We anticipate that these apatite-polymer composite microparticles can be extended to the delivery of other signalling molecules, and can be incorporated into other types of tissue engineering scaffolds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on light-emitting devices based on a green-phosphor compound (Mn-doped zinc silicate, Zn2SiO4: Mn) dispersed in a conductive polymeric blend (poly-o-methoxyaniline/polyvinylene fluoride, POMA/PVDF-TrFE). The devices exhibited high luminance in the green, good stability and homogeneous brilliance over effective areas up to 5 cm(2). The electroluminescence (EL) spectrum presented essentially the same characteristics as the photoluminescence (PL) and cathodoluminescence spectra, indicating that the light emission originates from decay of the same excited species, regardless of the excitation source. Operating characteristics were analyzed with current density - voltage (J - V) and luminance voltage ( L - V) curves to investigate the nature of the electroluminescence of the active material, which is still not completely understood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of composite materials has increased in the recent decades, mainly in the aeronautics and automotives industries. In the present study is elaborated a computational simulation program of the bending test using the finite elements method, in the commercial software ANSYS. This simulation has the objective of analyze the mechanical behavior in bending of two composites with polymeric matrix reinforced with carbon fibers. Also are realized bending tests of the 3 points to obtain the resistances of the materials. Data from simulation and tests are used to make a comparison between two failures criteria, Tsai-Wu and Hashin criterion. Copyright © 2009 SAE International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization. © Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, nanotechnologies have led to the production of materials with new and sometimes unexpected qualities through the manipulation of nanoscale components. This research aimed primarily to the study of the correlation between hierarchical structures of hybrid organic-inorganic materials such as conductive polymer composites (CPCs). Using a bottom-up methodology, we could synthesize a wide range of inorganic nanometric materials with a high degree of homogeneity and purity, such as thiol capped metal nanoparticles, stoichiometric geomimetic chrysotile nanotubes and metal dioxide nanoparticles. It was also possible to produce inorganic systems formed from the interaction between the synthesized materials. These synthesized materials and others like multiwalled carbon nanotubes and grapheme oxide were used to produce conductive polymer composites. Electrospinning causes polymer fibers to become elongated using an electric field. This technique was used to produce fibers with a nanometric diameter of a polymer blend based on two different intrinsically conducting polymers polymers (ICPs): polyaniline (PANI) and poly(3-hexylthiophene) (P3HT). Using different materials as second phase in the initial electrospun polymer fibers caused significant changes to the material hierarchical structure, leading to the creation of CPCs with modified electrical properties. Further study of the properties of these new materials resulted in a better understanding of the electrical conductivity mechanisms in these electrospun materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: Dispersion quality and macro-mechanical properties Nanomechanical properties at the surface and tensile properties CNC diameter and interphase thickness Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on their nanomechanical properties were reported. Then the effect of CNC surface modification on the mechanical properties was studied and correlated to the crystalline structure of these materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A photo-healable rubber composite based on effective and fast thiol-alkyne click chemistry as a selfhealing agent prestored in glass capillaries is reported. The click reaction and its effect on the mechanical properties of the composite are monitored in real time by dynamic mechanical analysis, showing that the successful bleeding of healing agents to the crack areas and the effective photoinitiated click reaction result in a 30% storage modulus increase after only 5 min of UV light exposure. X-ray tomography confirms capillary-driven bleeding of reactants to the damaged areas. The effect of storing the click chemistry reactants in separate capillaries is also studied, and results show the importance of stoichiometry in achieving a significant level of repair of the composite. No reactant degradation or premature chemical reaction is observed over time in samples stored in the absence of UV radiation; they are able to undergo the self-healing reaction even one month after preparation.