882 resultados para SEMANTIC WEB
Resumo:
The challenges of maintaining a building such as the Sydney Opera House are immense and are dependent upon a vast array of information. The value of information can be enhanced by its currency, accessibility and the ability to correlate data sets (integration of information sources). A building information model correlated to various information sources related to the facility is used as definition for a digital facility model. Such a digital facility model would give transparent and an integrated access to an array of datasets and obviously would support Facility Management processes. In order to construct such a digital facility model, two state-of-the-art Information and Communication technologies are considered: an internationally standardized building information model called the Industry Foundation Classes (IFC) and a variety of advanced communication and integration technologies often referred to as the Semantic Web such as the Resource Description Framework (RDF) and the Web Ontology Language (OWL). This paper reports on some technical aspects for developing a digital facility model focusing on Sydney Opera House. The proposed digital facility model enables IFC data to participate in an ontology driven, service-oriented software environment. A proof-of-concept prototype has been developed demonstrating the usability of IFC information to collaborate with Sydney Opera House’s specific data sources using semantic web ontologies.
Resumo:
Background: Two distinct trends are emerging with respect to how data is shared, collected, and analyzed within the bioinformatics community. First, Linked Data, exposed as SPARQL endpoints, promises to make data easier to collect and integrate by moving towards the harmonization of data syntax, descriptive vocabularies, and identifiers, as well as providing a standardized mechanism for data access. Second, Web Services, often linked together into workflows, normalize data access and create transparent, reproducible scientific methodologies that can, in principle, be re-used and customized to suit new scientific questions. Constructing queries that traverse semantically-rich Linked Data requires substantial expertise, yet traditional RESTful or SOAP Web Services cannot adequately describe the content of a SPARQL endpoint. We propose that content-driven Semantic Web Services can enable facile discovery of Linked Data, independent of their location. Results: We use a well-curated Linked Dataset - OpenLifeData - and utilize its descriptive metadata to automatically configure a series of more than 22,000 Semantic Web Services that expose all of its content via the SADI set of design principles. The OpenLifeData SADI services are discoverable via queries to the SHARE registry and easy to integrate into new or existing bioinformatics workflows and analytical pipelines. We demonstrate the utility of this system through comparison of Web Service-mediated data access with traditional SPARQL, and note that this approach not only simplifies data retrieval, but simultaneously provides protection against resource-intensive queries. Conclusions: We show, through a variety of different clients and examples of varying complexity, that data from the myriad OpenLifeData can be recovered without any need for prior-knowledge of the content or structure of the SPARQL endpoints. We also demonstrate that, via clients such as SHARE, the complexity of federated SPARQL queries is dramatically reduced.
Resumo:
To be presented at SIG/ISMB07 ontology workshop: http://bio-ontologies.org.uk/index.php To be published in BMC Bioinformatics. Sponsorship: JISC
Resumo:
The aim of this work is to improve retrieval and navigation services on bibliographic data held in digital libraries. This paper presents the design and implementation of OntoBib¸ an ontology-based bibliographic database system that adopts ontology-driven search in its retrieval. The presented work exemplifies how a digital library of bibliographic data can be managed using Semantic Web technologies and how utilizing the domain specific knowledge improves both search efficiency and navigation of web information and document retrieval.
Resumo:
Kurzel(2004) points out that researchers in e-learning and educational technologists, in a quest to provide improved Learning Environments (LE) for students are focusing on personalising the experience through a Learning Management System (LMS) that attempts to tailor the LE to the individual (see amongst others Eklund & Brusilovsky, 1998; Kurzel, Slay, & Hagenus, 2003; Martinez,2000; Sampson, Karagiannidis, & Kinshuk, 2002; Voigt & Swatman; 2003). According to Kurzel (2004) this tailoring can have an impact on content and how it’s accessed; the media forms used; method of instruction employed and the learning styles supported. This project is aiming to move personalisation forward to the next generation, by tackling the issue of Personalised e-Learning platforms as pre-requisites for building and generating individualised learning solutions. The proposed development is to create an e-learning platform with personalisation built-in. This personalisation is proposed to be set from different levels of within the system starting from being guided by the information that the user inputs into the system down to the lower level of being set using information inferred by the system’s processing engine. This paper will discuss some of our early work and ideas.
Resumo:
With emergence of "Semantic Web" there has been much discussion about the impact of technologies such as XML and RDF on the way we use the Web for developing e-learning applications and perhaps more importantly on how we can personalise these applications. Personalisation of e-learning is viewed by many authors (see amongst others Eklund & Brusilovsky, 1998; Kurzel, Slay, & Hagenus, 2003; Martinez, 2000; Sampson, Karagiannidis, & Kinshuk, 2002; Voigt & Swatman, 2003) as the key challenge for the learning technologists. According to Kurzel (2004) the tailoring of e-learning applications can have an impact on content and how it's accesses; the media forms used; method of instruction employed and the learning styles supported. This paper will report on a research project currently underway at the eCentre in University of Greenwich which is exploring different approaches and methodologies to create an e-learning platform with personalisation built-in. This personalisation is proposed to be set from different levels of within the system starting from being guided by the information that the user inputs into the system down to the lower level of being set using information inferred by the system's processing engine.
Resumo:
Das Ziel dieser Arbeit ist es, ein Konzept für eine Darstellung der Personennamendatei(PND) in den Sprachen Resource Description Framework (RDF), Resource DescriptionFramework Schema Language (RDFS) und Web Ontology Language (OWL) zu entwickeln. Der Prämisse des Semantic Web folgend, Daten sowohl in menschenverständlicher als auch in maschinell verarbeitbarer Form darzustellen und abzulegen, wird eine Struktur für Personendaten geschaffen. Dabei wird von der bestehenden Daten- und Struktursituation im Pica-Format ausgegangen. Die Erweiterbarkeit und Anpassbarkeit des Modells im Hinblick auf zukünftige, im Moment gegebenenfalls noch nicht absehbare Anwendungen und Strukurveränderungen, muss aber darüber hinaus gewährleistet sein. Die Modellierung orientiert sich an bestehenden Standards wie Dublin Core, Friend Of A Friend (FOAF), Functional Requirements for Bibliographic Records (FRBR), Functional Requirements for Authority Data (FRAD) und Resource Description and Access (RDA).
Resumo:
Semantic Web: Software agents on the Semantic Web may use commonly agreed service language, which enables co-ordination between agents and proactive delivery of learning materials in the context of actual problems. The vision is that each user has his own personalized agent that communicates with other agents.
Resumo:
Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. The idea is to improve, on the one hand, the results of Web Mining by exploiting the new semantic structures in the Web; and to make use of Web Mining, on overview of where the two areas meet today, and sketches ways of how a closer integration could be profitable.
Resumo:
Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: Growing numbers of researchers work on improving the results of Web Mining by exploiting semantic structures in the Web, and they use Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The second aim of this paper is to use these concepts to circumscribe what Web space is, what it represents and how it can be represented and analyzed. This is used to sketch the role that Semantic Web Mining and the software agents and human agents involved in it can play in the evolution of Web space.
Resumo:
Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: an increasing number of researchers is working on improving the results of Web Mining by exploiting semantic structures in the Web, and they make use of Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The Semantic Web is the second-generation WWW, enriched by machine-processable information which supports the user in his tasks. Given the enormous size even of today’s Web, it is impossible to manually enrich all of these resources. Therefore, automated schemes for learning the relevant information are increasingly being used. Web Mining aims at discovering insights about the meaning of Web resources and their usage. Given the primarily syntactical nature of the data being mined, the discovery of meaning is impossible based on these data only. Therefore, formalizations of the semantics of Web sites and navigation behavior are becoming more and more common. Furthermore, mining the Semantic Web itself is another upcoming application. We argue that the two areas Web Mining and Semantic Web need each other to fulfill their goals, but that the full potential of this convergence is not yet realized. This paper gives an overview of where the two areas meet today, and sketches ways of how a closer integration could be profitable.
Resumo:
The COntext INterchange (COIN) strategy is an approach to solving the problem of interoperability of semantically heterogeneous data sources through context mediation. COIN has used its own notation and syntax for representing ontologies. More recently, the OWL Web Ontology Language is becoming established as the W3C recommended ontology language. We propose the use of the COIN strategy to solve context disparity and ontology interoperability problems in the emerging Semantic Web – both at the ontology level and at the data level. In conjunction with this, we propose a version of the COIN ontology model that uses OWL and the emerging rules interchange language, RuleML.