948 resultados para SEGMENTED WORMLIKE MICELLES
Resumo:
We have studied, both experimentally and theoretically, the aggregation morphology of the ABA amphiphilic triblock copolymer in dilute solution by changing the solvent property. Experimental results showed that the micellar morphology changed from spheres to rods and then to vesicles by changing the common solvent from N-N-dimethylformamide (DMF) to dioxane and then to tetrahydrofuran (THF). These controllable aggregates were also obtained by Monte Carlo simulation. The simulative results showed that the solvent property is a key factor that determines the copolymer aggregation morphology. The morphology changed from spheres to rods and then to vesicles by increasing the solvent solubility, corresponding to the change of stretched of the copolymer chains in the micellar cores. This result is in good agreement with the experimental one. Moreover, the simulative results revealed that the end-to-end distant of the ABA triblock copolymer in the vesicle was larger than that in the spheres and rods, indicating that the copolymer chains were more stretched in vesicles than in the spheres and rods. Furthermore, we gave the distribution of the fraction of the chain number with the end-to-end distance. The results indicated that the amount of folded chains is almost the same as that of stretched chains in the vesicle. Although most chains were folded, stretched chains could be found in the rod and sphere micelles.
Resumo:
We study the dynamics of a spherical steel ball falling freely through a solution of entangled wormlike-micelles. If the sphere diameter is larger than a threshold value, the settling velocity shows repeated short oscillatory bursts separated by long periods of relative quiescence. We propose a model incorporating the interplay of settling-induced flow, viscoelastic stress and, as in M. E. Cates, D. A. Head and A. Ajdari, Phys. Rev. E, 2002, 66, 025202(R) and A. Aradian and M. E. Cates, Phys. Rev. E, 2006, 73, 041508, a slow structural variable for which our experiments offer independent evidence.
Resumo:
The effect of the hydrophobic properties of blocks B and C on the aggregate morphologies formed by ABC linear triblock copolymers in selective solvent was studied through the self-consistent field theory. Five typical micelles, such as core-shell-corona, hamburger-like, segmented-wormlike, were obtained by changing the hydrophobic properties of blocks B and C. The simulation results indicate that the shape and size of micelle are basically controlled by the hydrophobic degree of the middle block B, whereas the type of micelle is mainly determined by the hydrophobic degree of the end block C.
Resumo:
The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.
Resumo:
Several surfactant molecules self-assemble in solution to form long, flexible wormlike micelles which get entangled with each other, leading to viscoelastic gel phases. We discuss our recent work on the rheology of such a gel formed in the dilute aqueous solutions of a surfactant CTAT. In the linear rheology regime, the storage modulus G′(ω) and loss modulus G″(ω) have been measured over a wide frequency range. In the nonlinear regime, the shear stress σ shows a plateau as a function of the shear rate math above a certain cutoff shear rate mathc. Under controlled shear rate conditions in the plateau regime, the shear stress and the first normal stress difference show oscillatory time-dependence. The analysis of the measured time series of shear stress and normal stress has been done using several methods incorporating state space reconstruction by embedding of time delay vectors. The analysis shows the existence of a finite correlation dimension and a positive Lyapunov exponent, unambiguously implying that the dynamics of the observed mechanical instability can be described by that of a dynamical system with a strange attractor of dimension varying from 2.4 to 2.9.
Resumo:
We have used Monte Carlo simulation to study the micellization of ABC 3-miktoarm star terpolymers in a selective solvent (good to A segment, bad to B and C segments). The simulation results reveal that the self-assembled morphology is determined by the block length, molecular architecture, terpolymer concentration and insolubility of insoluble block in the solvent. In dilute solution, symmetric terpolymers (N-B = N-C = 30) tend to aggregate into a novel wormlike pearl-necklace structure linked by an alternating arrangement of B and C spheres, whereas the asymmetric terpolymers (NB = 10, NC = 50) are likely to aggregate into spherical or cylindrical micelles (formed by C blocks) connected with some small B spheres, when the concentration of terpolymer is relatively low (chain number is 100). However, when the concentration of terpolymer is relatively high (chain number is 250), the symmetric terpolymers tend to aggregate into a netlike structure linked by an alternation of B and C spheres, whereas the asymmetric terpolymers are likely to aggregate into wormlike micelles (formed by C blocks) connected with some of small spheres (formed by B blocks). Moreover, when the insolubility of insoluble block in the solvent is weak, the insoluble blocks aggregate into some incompact micelles.
Resumo:
In certain applications copolymer P123 (E21P67E21) is dissolved in water-ethanol mixtures, initially to form micellar solutions and eventually to gel. For P123 in 10, 20, and 30 wt % aqueous ethanol we used dynamic light scattering from dilute solutions to confirm micellization, oscillatory rheometry, and visual observation of mobility (tube inversion) to determine gel formation in concentrated solutions and small-angle X-ray scattering (SAXS) to determine gel structure. Except for solutions in 30 wt % aqueous ethanol, a clear-turbid transition was encountered on heating dilute and concentrated micellar solutions alike, and as for solutions in water alone (Chaibundit et al. Langmuir 2007, 23, 9229) this could be ascribed to formation of wormlike micelles. Dense clouding, typical of phase separation, was observed at higher temperatures. Regions of isotropic and birefringent gel were defined for concentrated solutions and shown (by SAXS) to have Cubic (fcc and hcp) and hexagonal structures, consistent with packed spherical and elongated micelles, respectively. The cubic gels (0, 10, and 20 wt % ethanol) were clear, while the hex gels were either turbid (0 and 10 wt % ethanol), turbid enclosing a clear region (20 wt % ethanol), or entirely clear (30 wt % ethanol). The SAXS profile was unchanged between turbid and clear regions of the 20 wt % ethanol gel. Temperature scans of dynamic moduli showed (as expected) a clear distinction between high-modulus cubic gels (G'(max) approximate to 20-30 kPa) and lower modulus hex gels (G'(max) < 10 kPa).
Resumo:
The self-assembled structure of toll-like receptor agonist lipopeptides containing the CSK4 peptide sequence is examined in aqueous solution. A remarkable dependence of morphology on the number of attached hexadecyl lipid chains is demonstrated, with spherical micelle structures for mono- and di-lipidated structures observed, but flexible wormlike micelles for the homologue containing three lipid chains. The distinct modes of assembly may have an important influence on the bioactivity of this class of lipopeptide.
Resumo:
Alkyl polyethoxylates are surfactants widely used in vastly different fields, from oil exploitation to pharmaceutical applications. One of the most interesting characteristics of these surfactants is their ability to form micellar systems with specific geometry, the so-called wormlike micelle. In this work, microemulsions with three distinct compositions (C/T = 40 %, 30 % and 25 %) was used with contain UNITOL / butanol / water / xylene, cosurfactant / surfactante (C/S) ratio equal to 0,5. The microemulsion was characterized by dynamic light scattering (DLS), capillary viscometry, torque rheometry and surface tensiometry experiments carried out with systems based on xylene, water, butanol (cosurfactant) and nonaethyleneglycolmonododecyl ether (surfactant), with fixed surfactant:cosurfactant:oil composition (with and without oil phase) and varying the overall concentration of the microemulsion. The results showed that a transition from wormlike micelles to nanodrops was characterized by maximum relative viscosity (depending on how relative viscosity was defined), which was connected to maximum effective diameter, determined by DLS. Surface tension suggested that adsorption at the air water interface had a Langmuir character and that the limiting value of the surfactant surface excess was independent of the presence of cosurfactant and xylene. The results of the solubilization of oil sludge and oil recovery with the microemulsion: C/S = 40%, 30% and 25% proved to be quite effective in solubilization of oil sludge, with the percentage of solubilization (%solubilization) as high as 92.37% and enhanced oil recovery rates up to 90.22% for the point with the highest concentration of active material (surfactant), that is, 40%.
Resumo:
Surfactant-polymer interactions are widely used when required rheological properties for specific applications, such as the production of fluids for oil exploration. Studies of the interactions of chitosan with cationic surfactants has attracted attention by being able to cause changes in rheological parameters of the systems making room for new applications. The commercial chitosan represents an interesting alternative to these systems, since it is obtained from partial deacetylation of chitin: the residues sites acetylated can then be used for the polymer-surfactant interactions. Alkyl ethoxylated surfactants can be used in this system, since these non-ionic surfactants can interact with hydrophobic sites of chitosan, modifying the rheology of solutions or emulsions resultants, which depends on the relaxation phenomenon occurring in these systems. In this work, first, inverse emulsions were prepared from chitosan solution as the dispersed phase and cyclohexane as the continuous phase were, using CTAB as a surfactant. The rheological analysis of these emulsions showed pronounced pseudoplastic behavior. This behavior was attributed to interaction of "loops" of chitosan chains. Creep tests were also performed and gave further support to these discussions. Subsequently, in order to obtain more information about the interaction of chitosan with non-ionic surfactants, solutions of chitosan were mixed with C12E8 and and carried out rheological analysis and dynamic light scattering. The systems showed marked pseudoplastic behavior, which became less evident when the concentration of surfactant was increased. Arrhenius and KWW equations were used to obtain parameters of the apparent activation energy and relaxation rate distribution, respectively, to which were connected to the content of surfactant and temperature used in this work
Resumo:
Two series of poly(ethylene oxide)-tetrapeptide conjugates have been prepared using a “Click” reaction between an alkyne-modified tetra(phenylalanine) or tetra(valine) and various azide-terminated poly(ethylene oxide) (PEO) oligomers. Three different PEO precursors were used to prepare these conjugates, with number-average molecular weights of 350, 1200, and 1800 Da. Assembly of mPEO-F4-OEt and mPEO-V4-OEt conjugates was achieved by dialysis of a THF solution of the conjugate against water or by direct aqueous rehydration of a thin film. The PEO length has a profound effect on the outcome of the self-assembly, with the F4 conjugates giving rise to nanotubes, fibers, and wormlike micelles, respectively, as the length of the PEO block is increased. For the V4 series, the propensity to form ß-sheets dominates, and hence, the self-assembled structures are reminiscent of those formed by peptides alone, even at the longer PEO lengths. Thus, this systematic study demonstrates that the self-assembly of PEO-peptides depends on both the nature of the peptides and the relative PEO block length.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
It is known that boehmite (AlOOH) nanofibers formed in the presence of nonionic poly(ethylene oxide) (PEO) surfactant at 373 K. A novel approach is proposed in this study for the growth of the boehmite nanofibers: when fresh aluminum hydrate precipitate was added at regular interval to initial mixture of boehmite and PEO surfactant at 373 K, the nanofibers grow from 40 to 50 nm long to over 100 nm. It is believed that the surfactant micelles play an important role in the nanofiber growth: directing the assembly of aluminum hydrate particles through hydrogen bonding with the hydroxyls on the surface of aluminum hydrate particles. Meanwhile a gradual improvement in the crystallinity of the fibers during growth is observed and attributed to the Ostwald ripening process. This approach allows us to precisely control the size and morphology of boehmite nanofibers using soft chemical methods and could be useful for low temperature, aqueous syntheses of other oxide nanomaterials with tailorable structural specificity such as size, dimension and morphology.
Resumo:
Pipelines are important lifeline facilities spread over a large area and they generally encounter a range of seismic hazards and different soil conditions. The seismic response of a buried segmented pipe depends on various parameters such as the type of buried pipe material and joints, end restraint conditions, soil characteristics, burial depths, and earthquake ground motion, etc. This study highlights the effect of the variation of geotechnical properties of the surrounding soil on seismic response of a buried pipeline. The variations of the properties of the surrounding soil along the pipe are described by sampling them from predefined probability distribution. The soil-pipe interaction model is developed in OpenSEES. Nonlinear earthquake time-history analysis is performed to study the effect of soil parameters variability on the response of pipeline. Based on the results, it is found that uncertainty in soil parameters may result in significant response variability of the pipeline.