1000 resultados para SECONDARY STAR
Resumo:
We investigate the effect of a secondary star magnetic field on the accretion disc dynamics of dwarf novae. Simulations have been carried out with a particle code and a dipolar magnetic field structure. The magnetic field acts to remove angular momentum from the disc material, increasing the inward mass flow. This makes the accretion disc more centrally condensed, causing a reduction in the recurrence time for dwarf nova outbursts. We have produced Doppler tomograms and light curves which may be compared with observations. These tomograms are significantly different from those produced in the absence of a magnetic field on the secondary. We derive an upper limit to the magnetic moment of the secondary star in UGem of mu_2<2x10^32 A m^2. The magnetic truncation of the accretion disc produces resonance phenomena similar to those seen in the superoutbursts of SUUMa systems. While these have not been observed for systems like UGem, observations of the SUUMa systems provide us with a useful diagnostic of the disc-field interaction. We are able to place an upper limit on the magnetic moment of the secondary in ZCha of mu_2<1x10^30 A m^2.
Resumo:
We present Roche tomograms of the G5-G8 IV/V secondary star in the long-period cataclysmic variable BV Cen reconstructed from Magellan Inamori Kyocera Echelle spectrograph echelle data taken on the Magellan Clay 6.5-m telescope. The tomograms show the presence of a number of large, cool star-spots on BV Cen for the first time. In particular, we find a large high-latitude spot which is deflected from the rotational axis in the same direction as seen on the K3-K5 IV/V secondary star in the cataclysmic variable AE Aqr. BV Cen also shows a similar relative paucity of spots at latitudes between 40° and 50° when compared with AE Aqr. Furthermore, we find evidence for an increased spot coverage around longitudes facing the white dwarf which supports models invoking star-spots at the L1 point to explain the low states observed in some cataclysmic variables. In total, we estimate that some 25 per cent of the Northern hemisphere of BV Cen is spotted. We also find evidence for a faint, narrow, transient emission line with characteristics reminiscent of the peculiar low-velocity emission features observed in some outbursting dwarf novae. We interpret this feature as a slingshot prominence from the secondary star and derive a maximum source size of 75000 km and a minimum altitude of 160000 km above the orbital plane for the prominence. The entropy landscape technique was applied to determine the system parameters of BV Cen. We find M1 = 1.18 +/-0.280.16Msolar and M2 = 1.05 +/-0.230.14Msolar and an orbital inclination of i = 53° +/- 4° at an optimal systemic velocity of ? = -22.3 km s-1. Finally, we also report on the previously unknown binarity of the G5IV star HD 220492.
Resumo:
We present a Roche tomography reconstruction of the secondary star in the cataclysmic variable AE Aqr. The tomogram reveals several surface inhomogeneities that are due to the presence of large, cool star-spots. In addition to a number of lower latitude spots, the maps also show the presence of a large, high-latitude spot similar to that seen in Doppler images of rapidly rotating isolated stars, and a relative paucity of spots at a latitude of 40 degrees. In total, we estimate that some 18 per cent of the Northern hemisphere of AE Aqr is spotted.
Resumo:
We report on the optical spectroscopy of the eclipsing halo low-mass X-ray binary 2S 0921-630, which reveals the absorption-line radial velocity curve of the K0 III secondary star with a semiamplitude K-2=92.89+/-3.84 km s(-1), a systemic velocity gamma=34.9+/-3.3 km s(-1), and an orbital period P-orb of 9.0035+/-0.0029 days (1 sigma). Given the quality of the data, we find no evidence for the effects of X-ray irradiation. Using the previously determined rotational broadening of the mass donor and applying conservative limits on the orbital inclination, we constrain the compact object mass to be 2.0-4.3 M-circle dot (1 sigma), ruling out a canonical neutron star at the 99% level. Since the nature of the compact object is unclear, this mass range implies that the compact object is either a low-mass black hole with a mass slightly higher than the maximum possible neutron star mass (2.9 M-circle dot) or a massive neutron star. If the compact object is a black hole, it confirms the prediction of the existence of low-mass black holes, while if the object is a massive neutron star, its high mass severely constrains the equation of state of nuclear matter.
Resumo:
The secondary stars in cataclysmic variables (CVs) are key to our understanding of the origin, evolution and behaviour of this class of interacting binary. In seeking a fuller understanding of these objects, the challenge for observers is to obtain images of the secondary star. This goal can be achieved through Roche tomography, an indirect imaging technique that can be used to map the Roche-lobe-filling secondary. The review begins with a description of the basic principles that underpin Roche tomography, including methods for determining the system parameters. Finally, we conclude with a look at the main scientific highlights to date, including the first unambiguous detection of starspots on AE Aqr B, and consider the future prospects of this technique.
Resumo:
We present a set of Roche tomography reconstructions of the secondary stars in the cataclysmic variables AM Her, QQ Vul, IP Peg and HU Aqr. The image reconstructions show distinct asymmetries in the irradiation pattern for all four systems that can be attributed to shielding of the secondary star by the accretion stream/column in AM Her, QQ Vul and HU Aqr, and increased irradiation by the bright-spot in IP Peg. We use the entropy landscape technique to derive accurate system parameters (M-1, M-2, i and gamma) for the four binaries. In principle, this technique should provide the most reliable mass determinations available, since the intensity distribution across the secondary star is known. We also find that the intensity distribution can systematically affect the value of gamma derived from circular orbit fits to radial velocity variations.
Resumo:
We present Roche tomograms of the secondary star in the dwarf nova system RU Pegasi derived from blue and red arm ISIS data taken on the 4.2-m William Herschel Telescope. We have applied the entropy landscape technique to determine the system parameters and obtained component masses of M1 = 1.06 Msun, M2 = 0.96 Msun, an orbital inclination angle of i = 43 degrees, and an optimal systemic velocity of gamma = 7 km/s. These are in good agreement with previously published values. Our Roche tomograms of the secondary star show prominent irradiation of the inner Lagrangian point due to illumination by the disc and/or bright spot, which may have been enhanced as RU Peg was in outburst at the time of our observations.We find that this irradiation pattern is axi-symmetric and confined to regions of the star which have a direct view of the accretion regions. This is in contrast to previous attempts to map RU Peg which suggested that the irradiation pattern was non-symmetric and extended beyond the terminator. We also detect additional inhomogeneities in the surface distribution of stellar atomic absorption that we ascribe to the presence of a large star-spot. This spot is centred at a latitude of about 82 degrees and covers approximately 4 per cent of the total surface area of the secondary. In keeping with the high latitude spots mapped on the cataclysmic variables AE Aqr and BV Cen, the spot on RU Peg also appears slightly shifted towards the trailing hemisphere of the star. Finally, we speculate that early mapping attempts which indicated non-symmetric irradiation patterns which extended beyond the terminator of CV donors could possibly be explained by a superposition of symmetric heating and a large spot.
Resumo:
The secondary stars in cataclysmic variables (CVs) are key to our understanding of the origin evolution and behaviour of this class of interacting binary. In seeking a fuller understanding of these objects the challenge for observers is to obtain images of the secondary star. This goal can be achieved through Roche tomography an indirect imaging technique that can be used to map the Roche-lobe-filling secondary star. The review begins with a description of the basic principles that underpin Roche tomography including methods for determining the binary system parameters. Noise propagation onto Roche tomograms is also covered. Finally the review concludes with a look at the main scientific highlights to date and the future prospects for Roche tomography
Resumo:
We accurately determine the fundamental system parameters of the neutron star X-ray transient Cen X-4 solely using phase-resolved high-resolution UV-Visual Echelle Spectrograph spectroscopy. We first determine the radial-velocity curve of the secondary star and then model the shape of the phase-resolved absorption line profiles using an X-ray binary model. The model computes the exact rotationally broadened, phase-resolved spectrum and does not depend on assumptions about the rotation profile, limb-darkening coefficients and the effects of contamination from an accretion disc. We determine the secondary star-to-neutron star binary mass ratio to be 0.1755 ± 0.0025, which is an order of magnitude more accurate than previous estimates. We also constrain the inclination angle to be 32^{+8}_{-2} degrees. Combining these values with the results of the radial-velocity study gives a neutron star mass of 1.94^{+0.37}_{-0.85}M⊙ consistent with previous estimates. Finally, we perform the first Roche tomography reconstruction of the secondary star in an X-ray binary. The tomogram reveals surface inhomogeneities that are due to the presence of cool starspots. A large cool polar spot, similar to that seen in Doppler images of rapidly rotating isolated stars, is present on the Northern hemisphere of the K7 secondary star and we estimate that ~4 percent of the total surface area of the donor star is covered with spots.This evidence for starspots supports the idea that magnetic braking plays an important role in the evolution of low-mass X-ray binaries.
Resumo:
We present high-speed, three-colour photometry of the eclipsing cataclysmic variable SDSS J150722.30+523039.8 (hereafter SDSS J1507). This system has an orbital period of 66.61 min, placing it below the observed `period minimum' for cataclysmic variables. We determine the system parameters via a parametrized model of the eclipse fitted to the observed lightcurve by ?2 minimization. We obtain a mass ratio of q = 0.0623 +/- 0.0007 and an orbital inclination . The primary mass is Mw = 0.90 +/- 0.01Msolar. The secondary mass and radius are found to be Mr = 0.056 +/- 0.001Msolar and Rr = 0.096 +/- 0.001Rsolar, respectively. We find a distance to the system of 160 +/- 10pc. The secondary star in SDSS J1507 has a mass substantially below the hydrogen burning limit, making it the second confirmed substellar donor in a cataclysmic variable. The very short orbital period of SDSS J1507 is readily explained if the secondary star is nuclearly evolved, or if SDSS J1507 formed directly from a detached white dwarf/brown dwarf binary. Given the lack of any visible contribution from the secondary star, the very low secondary mass and the low HeI ?6678/Ha emission-line ratio, we argue that SDSS J1507 probably formed directly from a detached white dwarf/brown dwarf binary. If confirmed, SDSS J1507 will be the first such system identified. The implications for binary star evolution, the brown dwarf desert and the common envelope phase are discussed.
Resumo:
We present a detailed optical study of the ultracompact X-ray binary 4U 0614+091. We have used 63 hr of time-resolved optical photometry taken with three different telescopes (IAC80, NOT, and SPM) to search for optical modulations. The power spectra of each data set reveals sinusoidal modulations with different periods, which are not always present. The strongest modulation has a period of 51.3 minutes, a semiamplitude of 4.6 mmag, and is present in the IAC80 data. The SPM and NOT data show periods of 42 minutes and 64 minutes, respectively, but with much weaker amplitudes, 2.6 mmag and 1.3 mmag, respectively. These modulations arise from either X-ray irradiation of the inner face of the secondary star and/or a superhump modulation from the accretion disk, or quasiperiodic modulations in the accretion disk. It is unclear whether these periods/quasi-periodic modulations are related to the orbital period; however, the strongest period of 51.3 minutes is close to earlier tentative orbital periods. Further observations taken over a long baseline are encouraged.
Resumo:
Context: The masses previously obtained for the X-ray binary 2S 0921-630 inferred a compact object that was either a high-mass neutron star or low-mass black-hole, but used a previously published value for the rotational broadening (v sin i) with large uncertainties. Aims: We aim to determine an accurate mass for the compact object through an improved measurement of the secondary star's projected equatorial rotational velocity. Methods: We have used UVES echelle spectroscopy to determine the v sin i of the secondary star (V395 Car) in the low-mass X-ray binary 2S 0921-630 by comparison to an artificially broadened spectral-type template star. In addition, we have also measured v sin i from a single high signal-to-noise ratio absorption line profile calculated using the method of Least-Squares Deconvolution (LSD). Results: We determine v sin i to lie between 31.3±0.5 km s-1 to 34.7±0.5 km s-1 (assuming zero and continuum limb darkening, respectively) in disagreement with previous results based on intermediate resolution spectroscopy obtained with the 3.6 m NTT. Using our revised v sin i value in combination with the secondary star's radial velocity gives a binary mass ratio of 0.281±0.034. Furthermore, assuming a binary inclination angle of 75° gives a compact object mass of 1.37±0.13 M_?. Conclusions: We find that using relatively low-resolution spectroscopy can result in systemic uncertainties in the measured v sin i values obtained using standard methods. We suggest the use of LSD as a secondary, reliable check of the results as LSD allows one to directly discern the shape of the absorption line profile. In the light of the new v sin i measurement, we have revised down the compact object's mass, such that it is now compatible with a canonical neutron star mass.
Resumo:
We present high-speed, three-colour photometry of the eclipsing cataclysmic variables GY Cnc, IR Com and HT Cas. We find that the sharp eclipses in GY Cnc and IR Com are due to eclipses of the white dwarf. There is some evidence for a bright-spot on the edge of the accretion disc in GY Cnc, but not in IR Com. Eclipse mapping of HT Cas is presented which shows changes in the structure of the quiescent accretion disc. Observations in 2002 show the accretion disc to be invisible except for the presence of a bright-spot at the disc edge. 2003 observations, however, clearly show a bright inner disc and the bright-spot to be much fainter than in 2002. Although no outburst was associated with either set of quiescent observations, the system was similar to 0.6 mJy brighter in 2003, mainly due to the enhanced emission from the inner disc. We propose that these changes are due to variations in the mass-transfer rate from the secondary star and through the disc. The disc colours indicate that it is optically thin in both its inner and outer regions. We estimate the white dwarf temperature of HT Cas to be 15 000 +/- 1000 K in 2002 and 14 000 +/- 1000 K in 2003.
Resumo:
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variable V347 Pup ( = LB 1800). There is evidence of irradiation on the inner hemisphere of the secondary star, which we correct for using a model to give a secondary-star radial velocity of K R = 198 +/- 5 km s(-1). The rotational velocity of the secondary star in V347 Pup is found to be v sin i = 131 +/- 5 km s(-1) and the system inclination is i = 84degrees.0 +/- 2degrees.3. From these parameters we obtain masses of M-1 = 0.63 +/- 0.04 M for the white dwarf primary and M-2 = 0.52 +/- 0.06 M for the M0.5V secondary star, giving a mass ratio of q = 0.83 +/- 0.05. On the basis of the component masses, and the spectral type and radius of the secondary star in V347 Pup, we find tentative evidence for an evolved companion. V347 Pup shows many of the characteristics of the SW Sex stars, exhibiting single-peaked emission lines, high-velocity S-wave components and phase-offsets in the radial velocity curve. We find spiral arms in the accretion disc of V347 Pup and measure the disc radius to be close to the maximum allowed in a pressureless disc.
Resumo:
We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variables AC Cnc and V363 Aur (=Lanning 10). There is evidence of irradiation on the inner hemisphere of the secondary star in both systems, which we correct for using a model that reproduces the observations remarkably well. We find the radial velocity of the secondary star in AC Cnc to be K-R=176+/-3 km s(-1) and its rotational velocity to be v sin i=135+/-3 km s(-1). From these parameters we obtain masses of M-1=0.76+/-0.03 M-circle dot for the white-dwarf primary and M-2=0.77+/-0.05 M-circle dot for the K2+/-1 V secondary star, giving a mass ratio of q=1.02+/-0.04. We measure the radial and rotational velocities of the G7+/-2V secondary star in V363 Aur to be K-R=168+/-5 km s(-1) and v sin i=143+/-5 km s(-1), respectively. The component masses of V363 Aur are M-1=0.90+/-0.06M(circle dot) and M-2=1.06+/-0.11 M-circle dot giving a mass ratio of q=1.17+/-0.07. The mass ratios for AC Cnc and V363 Aur fall within the theoretical limits for dynamically and thermally stable mass transfer. Both systems are similar to the SW Sex stars, exhibiting single-peaked emission lines with transient absorption features, high-velocity S-wave components and phase-offsets in their radial-velocity curves. The Balmer lines in V363 Aur show a rapid increase in flux around phase 0 followed by a rapid decrease, which we attribute to the eclipse of an optically thick region at the centre of the disc. This model could also account for the behaviour of other SW Sex stars where the Balmer lines show only a shallow eclipse compared to the continuum.