992 resultados para SEA-FLOOR
Resumo:
Visual sea-floor mapping is a rapidly growing application for Autonomous Underwater Vehicles (AUVs). AUVs are well-suited to the task as they remove humans from a potentially dangerous environment, can reach depths human divers cannot, and are capable of long-term operation in adverse conditions. The output of sea-floor maps generated by AUVs has a number of applications in scientific monitoring: from classifying coral in high biological value sites to surveying sea sponges to evaluate marine environment health.
Resumo:
In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.
Resumo:
Harry Hess's hypothesis of sea-floor spreading brought together his long-standing interests in island arcs, oceanic topography, and the oceanic crust. The one unique feature of Hess's hypothesis was the origin of the oceanic crust as a hydration rind on the top of the mantle -- an idea that was not well received, even by the early converts to sea-floor spreading. Hess never changed his mind on this issue, and his stubbornness illuminates the logic of his discovery. Published and archival records show that 1) Hess became convinced the oceanic crust was a hydration rind as early as mid 1958, when he was still a fixist, 2) he devised sea-floor spreading in 1960 to reconcile the hydration-rind model with the newly discovered, high heat flow at oceanic ridge crests, and 3) Hess's new mobilist solution did the least amount of violence to his older fixist solution.
Resumo:
A marine geophysical survey was carried out, on the RN Science 1 of the Institute of Oceanography, Chinese Academy of Sciences (IOCAS), in 2000, at the Miyako Section of Okinawa Trough. Here we present seismic and acoustic evidence of a gas seep on the sea floor on the western part of the Okinawa Through, near the lower slope of the East China Sea Slope and discuss the possibility of related formation of gas hydrate. A gas column reflection was observed in echo-sounder data above a section where the sea floor reflector was missing, on both the echo-sounder and the seismic data for line H14. The seismic data also show an acoustic curtain reflection and a turbidity reflection at this section. These anomalies are the evidence of the existence of a gas seep, which occupies an area 2.2 km in diameter. Based on the acoustic curtain on line H14, we believe that the amount of gas contained in the sediments below the gas seep is larger than 1 % by volume of sediment. Tectonically, the gas seep developed in a small basin controlled by basement uplift in the north, south and east. The thickness of the sediment layer can be greater than 3.5 km. A mud diapir structure was found in layer D beneath the gas seep. Over-pressure may occur due to the large sediment thickness and also the tectonic basement uplift in the north, south, and east. The mud diapir could be the preferential pathway for methane-rich fluids. The acoustic curtain may indicate that free gas related to the gas seep can be formed on the sea floor. We also note that the layer above the acoustic curtain on profile H14 may contain gas hydrate.