980 resultados para SCAR
Resumo:
Hypertrophic scars are formed by collagen overproduction in wounded areas and often occur in victims of severe burns. There are several methods for hypertrophic scar remediation and silicone gel therapy is one of the more successful methods. Research by others has shown that the activity of these gels may be due to migration of amphiphilic silicone oligomers from the gel and into the dermis, down-regulating production of collagen by fibroblasts. Normal silicone oil (PDMS) does not produce the same effect on fibroblasts. The main purpose of this project is the introduction of a particular amphiphilic silicone rake copolymer into an appropriate network which can absorb and release the silicone copolymer on the scarred area. Hydrogels are polymeric crosslinked networks which can swell in water or a drug solution, and gradually release the drug when applied to the skin. The application of gel enhances the effectiveness of the therapy, reduces the period of treatment and can be comfortable for patients to use. Polyethylene glycol (PEG) based networks have been applied in this research, because the amphiphilic silicone rake copolymer to be used as a therapy has polyethylene oxide (PEO) as a side chain. These PEO side chains have very similar chemical structure to a PEG gel chain so enhancing both the compatibility and the diffusion of the amphiphilic silicone rake copolymer into and out of the gel. Synthesis of PEG-based networks has been performed by two methods: in situ silsesquioxane formation as crosslink with a sol-gel reaction under different conditions and UV curing. PEG networks have low mechanical properties which is a fundamental limitation of the polymer backbone. For mechanical properties enhancement, composite networks were synthesized using nano-silica with different surface modification. The chemical structure of in situ silsesquioxane in the dry network has been examined by Solid State NMR, Differential Scanning Calorimetry (DSC) and swelling measurements in water. Mechanical properties of dry networks were tested by Dynamic Mechanical Thermal Analysis (DMTA) to determine modulus and interfacial interaction between silica and the network. In this way a family of self-reinforced networks has been produced that have been shown to absorb and deliver the active amphiphilic silicone- PEO rake copolymer.
Resumo:
The formation of hypertrophic scars is a frequent outcome of wound repair and often requires further therapy with treatments such as silicone gel sheets (SGS; Perkins et al., 1983). Although widely used, knowledge regarding SGS and their mechanism of action on hypertrophic scars is limited. Furthermore, SGS require consistent application for at least twelve hours a day for up to twelve consecutive months, beginning as soon as wound reepithelialisation has occurred. Preliminary research at QUT has shown that some species of silicone present in SGS have the ability to permeate into collagen gel skin mimetics upon exposure. An analogue of these species, GP226, was found to decrease both collagen synthesis and the total amount of collagen present following exposure to cultures of cells derived from hypertrophic scars. This silicone of interest was a crude mixture of silicone species, which resolved into five fractions of different molecular weight. These five fractions were found to have differing effects on collagen synthesis and cell viability following exposure to fibroblasts derived from hypertrophic scars (HSF), keloid scars (KF) and normal skin (nHSF and nKF). The research performed herein continues to further assess the potential of GP226 and its fractions for scar remediation by determining in more detail its effects on HSF, KF, nHSF, nKF and human keratinocytes (HK) in terms of cell viability and proliferation at various time points. Through these studies it was revealed that Fraction IV was the most active fraction as it induced a reduction in cell viability and proliferation most similar to that observed with GP226. Cells undergoing apoptosis were also detected in HSF cultures exposed to GP226 and Fraction IV using the Tunel assay (Roche). These investigations were difficult to pursue further as the fractionation process used for GP226 was labour-intensive and time inefficient. Therefore a number of silicones with similar structure to Fraction IV were synthesised and screened for their effect following application to HSF and nHSF. PDMS7-g-PEG7, a silicone-PEG copolymer of low molecular weight and low hydrophilic-lipophilic balance factor, was found to be the most effective at reducing cell proliferation and inducing apoptosis in cultures of HSF, nHSF and HK. Further studies investigated gene expression through microarray and superarray techniques and demonstrated that many genes are differentially expressed in HSF following treatment with GP226, Fraction IV and PDMS7-g-PEG7. In brief, it was demonstrated that genes for TGFβ1 and TNF are not differentially regulated while genes for AIFM2, IL8, NSMAF, SMAD7, TRAF3 and IGF2R show increased expression (>1.8 fold change) following treatment with PDMS7-g-PEG7. In addition, genes for αSMA, TRAF2, COL1A1 and COL3A1 have decreased expression (>-1.8 fold change) following treatment with GP226, Fraction IV and PDMS7-g-PEG7. The data obtained suggest that many different pathways related to apoptosis and collagen synthesis are affected in HSF following exposure to PDMS7-g-PEG7. The significance is that silicone-PEG copolymers, such as GP226, Fraction IV and PDMS7-g-PEG7, could potentially be a non-invasive substitute to apoptosis-inducing chemical agents that are currently used as scar treatments. It is anticipated that these findings will ultimately contribute to the development of a novel scar therapy with faster action and improved outcomes for patients suffering from hypertrophic scars.
Resumo:
BACKGROUND Silver dressings have been widely and successfully used to prevent cutaneous wounds, including burns, chronic ulcers, dermatitis and other cutaneous conditions, from infection. However, in a few cases, skin discolouration or argyria-like appearances have been reported. This study investigated the level of silver in scar tissue post-burn injury following application of Acticoat, a silver dressing. METHODS A porcine deep dermal partial thickness burn model was used. Burn wounds were treated with this silver dressing until completion of re-epithelialization, and silver levels were measured in a total of 160 scars and normal tissues. RESULTS The mean level of silver in scar tissue covered with silver dressings was 136 microg/g, while the silver level in normal skin was less than 0.747 microg/g. A number of wounds had a slate-grey appearance, and dissection of the scars revealed brown-black pigment mostly in the middle and deep dermis within the scar. The level of silver and the severity of the slate-grey discolouration were correlated with the length of time of the silver dressing application. CONCLUSIONS These results show that silver deposition in cutaneous scar tissue is a common phenomenon, and higher levels of silver deposits and severe skin discolouration are correlated with an increase in the duration of this silver dressing application.
Resumo:
This study describes the evaluation of a clinical scar scale for our porcine burn scars, which includes scar cosmetic outcome, colour, height and hair, supplemented with reference porcine scar photographs representing each scar outcome and scar colour scores. A total of 72 porcine burn scars at week 6 after burn were rated in vivo and/or on photographs. Good agreements were achieved for both intra-rater reliability (correlation is 0.86-0.98) and inter-rater reliability (ICC=80-85%). The results showed statistically significant correlations for each pair in this clinical scar scale (p<0.01), with the best correlation found between scar cosmetic outcome and scar colour. A multivariate principle components analysis revealed that this clinical scar assessment was highly correlated with scar histology, wound size, and re-epithelialisation data (p<0.001). More severe scars are clinically characterised by darker purple colouration, more elevation, no presence of hair, histologically by thicker scar tissue, thinner remaining normal dermis, are more likely to have worse contraction, and slower re-epithelialisation. This study demonstrates that our clinical scar scale is a reliable, independent and valuable tool for assessing porcine burn outcome and truthfully reflects scar appearance and function. To our knowledge, this is the first study demonstrating a high correlation between clinical scar assessment and scar histology, wound contraction and re-epithelialisation data on porcine burn scars. We believe that the successful use of porcine scar scales is invaluable for assessing potential human burn treatments.
Resumo:
This project investigates for the first time the biological mechanisms underlying the anecdotal use of Shikonin, an active component extracted from the Chinese herbal medicine "Zi Cao", as a treatment for hypertrophic scars. Compelling molecular and cellular evidence was generated supporting the therapeutic value of Shikonin as a scar treatment, suggesting that further development of this agent is warranted.
Resumo:
Downy mildew pathogen of pearl millet in India is associated with the spread of the highly virulent Sclerospora graminicola pathotype-1. Twenty-seven S. graminicola isolates were screened using 20 intersimple sequence repeats (ISSR). Dinucleotide repeat primer [17898A-(CA)(6) AC] amplified a similar to 600 bp fragment specific to five isolates of pathotype-1 (Sg 048, Sg 153, Sg 212, DM-11 and DM-90). The ISSR fragment linked with pathotype-1 was cloned successfully and sequenced. To convert ISSR fragments into pathotype-specific sequence characterised amplified region (SCAR) markers, PCR primers were designed using a sequence of the cloned DNA fragment. PCR amplification using SCAR primer pair (UOM3-Sg-Path1-F/R) amplified a single 284 bp band only in isolates of S. graminicola pathotype-1. This SCAR primer pair did not amplify the 284 bp product from the other five S. graminicola pathotypes or a negative control, which demonstrates primer specificity for pathotype-1. The SCAR primer pair (UOM3-Sg-Path1-F/R) obtained in this study will provide a valuable tool for rapid identification and specific detection of S. graminicola pathotype-1.
Resumo:
INTRODUCTION No burn-scar specific, health-related quality of life (HRQOL) measure exists. This study aimed to develop a patient-reported, evaluative HRQOL measure to assess the impact of burn scarring in children and adults. METHOD Semi-structured interviews, content validation surveys, and cognitive interviews were used to develop and test content validity of a new measure - the Brisbane Burn Scar Impact Profile (BBSIP). RESULTS Participants comprised Australian adults (n=23) and children (n=19) with burn scarring; caregivers of children with burn scarring (n=28); and international scar management experts (n=14). Items distinct from other burn scar measures emerged. Four versions of the BBSIP were developed; one for children aged 8-18 years, one for adults, one for caregivers (as proxies for children aged less than 8-years), and one for caregivers of children aged 8-18 years. Preliminary content validity of the BBSIP was supported. Final items covered physical and sensory symptoms; emotional reactions; impact on social functioning and daily activities; impact of treatment; and environmental factors. CONCLUSION The BBSIP was developed to assess burn-scar specific HRQOL and will be available at http://www.coolburns.com.au under a creative commons license. Further testing is underway.
Resumo:
INTRODUCTION There is a paucity of research investigating the scar outcome of children with partial thickness burns. The aim of this study was to assess the scar outcome of children with partial thickness burns who received a silver dressing acutely. METHOD Children aged 0-15 years with an acute partial thickness burn, ≤10% TBSA were included. Children were originally recruited for an RCT investigating three dressings for partial thickness burns. Children were assessed at 3 and 6 months after re-epithelialization. 3D photographs were taken of the burn site, POSAS was completed and skin thickness was measured using ultrasound imaging. RESULTS Forty-three children returned for 3 and 6 month follow-ups or returned a photo. Days to re-epithelialization was a significant predictor of skin/scar quality at 3 and 6 months (p<0.01). Patient-rated color and observer-rated vascularity and pigmentation POSAS scores were comparable at 3 months (color vs. vascularity 0.88, p<0.001; color vs. pigmentation 0.64, p<0.001), but patients scored higher than the observer at 6 months (color vs. vascularity 0.57, p<0.05; color vs. pigmentation 0.15, p=0.60). Burn depth was significantly correlated with skin thickness (r=0.51, p<0.01). Hypopigmentation of the burn site was present in 25.8% of children who re-epithelialized in ≤2 weeks. CONCLUSION This study has provided information on outcomes for children with partial thickness burns and highlighted a need for further education of this population.
Resumo:
Fire is an important driver of the boreal forest ecosystem, and a useful tool for the restoration of degraded forests. However, we lack knowledge on the ecological processes initiated by prescribed fires, and whether they bring about the desired restoration effects. The purpose of this study was to investigate the impacts of low-intensity experimental prescribed fires on four ecological processes in young commercial Scots pine (Pinus sylvestris) stands eight years after the burning. The processes of interest were tree mortality, dead wood creation, regeneration and fire scar formation. These were inventoried in twelve study plots, which were 30 m x 30 m in size. The plots belonged to two different stand age classes: 30-35 years or 45 years old at the time of burning. The study was partly a follow-up of study plots researched by Sidoroff et al. (2007) one year after burning in 2003. Tree mortality increased from 183 stems ha-1 in 2003 to 259 stems ha-1 in 2010, corresponding to 15 % and 21 % of stem number respectively. Most mortality was experienced in the stands of the younger age class, in smaller diameter classes and among species other than Scots pine. By 2010, the average mortality of Scots pine per plot was 18%, but varied greatly ranging from 0% to 63% of stem number. Delayed mortality, i.e. mortality that occurred between 2 and 8 years after fire, seemed to become more important with increasing diameter. The input of dead wood also varied greatly between plots, from none to 72 m3 ha-1, averaging at 12 m3 ha-1. The amount of fire scarred trees per plot ranged from none to 20 %. Four out of twelve plots (43 %) did not have any fire scars. Scars were on average small: 95% of scars were less than 4 cm in width, and 75% less than 40 cm in length. Owing to the light nature of the fire, the remaining overstorey and thick organic layer, regeneration was poor overall. The abundance of pine and other seedlings indicated a viable seed source existed, but the seedlings failed to establish under dense canopy. The number of saplings ranged from 0 to 12 333 stems ha-1. The results of this study indicate that a low intensity fire does not necessarily initiate the ecological processes of tree mortality, dead wood creation and regeneration in the desired scale. Fire scars, which form the basis of fire dating in fire history studies, did not form in all cases.
Resumo:
P>Sex controls have been performed in some farmed fish species because of significant growth differences between females and males. In yellow catfish (Pelteobagrus fulvidraco), adult males are three times larger than female adults. In this study, six Y- and X-linked amplified fragment length polymorphism fragments were screened by sex-genotype pool bulked segregant analysis and individual screening. Interestingly, sequence analysis identified two pairs of allelic genes, Pf33 and Pf62. Furthermore, the cloned flanking sequences revealed several Y- and X-specific polymorphisms, and four Y-linked or X-linked sequence characterized amplified region (SCAR) primer pairs were designed and converted into Y- and X-linked SCAR markers. Consequently, these markers were successfully used to identify genetic sex and YY super-males, and applied to all-male population production. Thus, we developed a novel and simple technique to help commercial production of YY super-males and all-male populations in the yellow catfish.
Resumo:
Gibel carp ( Carassius auratus gibelio) is a uniquely gynogenetic species with a minor ratio of males in natural habitats, but its male origin and sex determination mechanisms have been unknown. In this study, a male-biased mutant family was discovered from the gynogenetic gibel carp, and a male-specific SCAR marker was identified from the mutant family. Normal spermatogenesis was observed in the male testes by immuno. fluorescence histochemistry. Nearly identical AFLP profiles were observed between males and females, but a male-specific 86 bp AFLP fragment was screened by sex-pool bulked segregant analysis and individual screening. Based on the male-specific AFLP fragment, a total of 579 bp sequences were cloned by genome walking. Subsequently, a male-specific SCAR marker was designed, and the male-specific DNA fragment was confirmed to be steadily transmitted to the next generation and consistently detected only in males. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Random amplified polymorphic DNA (RAPD) molecular markers specific for one, two or three clones have been identified from five gynogenetic clones of silver crucian carp (Carassius auratus gibelio Bloch) using RAPD markers developed earlier. In this study, three RAPD markers (RA1-PA, RA2-EF and RA4-D) produced by Opj-1, and two RAPD DNA fragments (RA3-PAD and RA5-D) produced by Opj-7, were selected for molecular cloning and sequencing. Sequence data indicated that there were identical 801-bp nucleotide sequences in the shared marker RA1-PA cloned respectively from clones P and A, and the shared marker RA2-EF (which was cloned from clones E and F), were also of identical 958-by nucleotide sequences. The nucleotide sequences of the shared marker RA3-PAD fragments were also similar for 1181 by among clones P, A and D. The specific fragment RA4-D was composed of 628 bp, and the fragment RA5-D from clone D contained 385 nucleotides. According to the nucleotide sequences, we designed and synthesized five pairs of sequence characterized amplified regions (SCAR) primers to identify the specific fragments in these gynogenetic clones of silver crucian carp. Only individuals from clones P and A amplified a specific band using a pair of SCI-PA primers synthesized according to the marker RA1-PA sequences, whereas no products were detected in individuals from clones D, E and F. The PCR products amplified using SC2-EF and SC3-PAD primers were as expected. Furthermore, the pair of SC4-D primers amplified specific bands only in individuals from clone D, although weak bands could be produced in all individuals of the five clones when lower annealing temperatures were used. However, an additional pair of SC5-D primers designed from the RA5-D marker sequences could amplify a DNA band in individuals from clones P, A and D, and the same weak band was produced in clone E, whereas no products were detected in individuals from clone F. Searches in GenBank revealed that the 385-bp DNA fragment from RA5-D was homologous to the 5' end of gonadotropin I beta subunit 2 gene and growth hormone gene. No homologous sequences were found for other markers in GenBank. The SCAR markers identified in this study will offer a powerful, easy, and rapid method for discrimination of different clones and for genetic analyses that examine their origins and unique reproductive modes in crucian carp. Furthermore, they will likely benefit future selective breeding programs as reliable and reproducible molecular markers. (C) 2001 Elsevier Science B.V. All rights reserved.