972 resultados para SCANNING CALORIMETRIC ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miscibility and phase separation in the blends of phenolphthalein poly(aryl ether ketone) (PPAEK) and poly(ethylene oxide) (PEO) were investigated by means of differential scanning calorimetry (DSC). The PPAEK/PEO blends prepared by solution casting from N,N-dimethylformamide (DMF) displayed single composition-dependent glass transition temperatures (T-g), intermediate between those of the pure components, suggesting that the blend system is miscible in the amorphous state at all compositions. All the blends underwent phase separation at higher temperatures and the system exhibited a lower critical solution temperature (LCST) behavior. A step-heating thermal analysis was designed to determine the phase boundaries with DSC. The significant changes in the thermal properties of blends were utilized to judge the mixing status for the blends and the phase diagram was thus established. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential scanning calorimetric studies on ammonium perchlorate have been carried out. The enthalpy values for the phase transition endotherm and the two exotherms have been reported in the present communication. A new method has been developed for the estimation of kinetic parameters from DSC the mograms. The values for activation energy as calculated by the above method for low temperature and high temperature exotherms are in close agreement with literature values. The present studies also confirm the presence of small exothermic peaks at the initial stages of high temperature exotherm. Explanation for the same has been given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS), optical absorption spectroscopy (UV-VIS) and differential scanning calorimetry (DSC). At pH 7.0, cyanomet-HbGp is very stable, no oligomeric dissociation is observed, while denaturation occurs at 56 degrees C, 4 degrees C higher as compared to oxy-HbGp. The oligomeric dissociation of HbGp occurs simultaneously with some protein aggregation. Kinetic studies for oxy-HbGp using UV-VIS and DES allowed to obtain activation energy (E(a)) values of 278-262 kJ/mol (DES) and 333 kJ/mol (UV-VIS). Complimentary DSC studies indicate that the denaturation is irreversible, giving endotherms strongly dependent upon the heating scan rates, suggesting a kinetically controlled process. Dependence on protein concentration suggests that the two components in the endotherms are due to oligomeric dissociation effect upon denaturation. Activation energies are in the range 200-560 kJ/mol. The mid-point transition temperatures were in the range 50-65 degrees C. Cyanomet-HbGp shows higher mid-point temperatures as well as activation energies, consistent with its higher stability. DSC data are reported for the first time for an extracellular hemoglobin. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare experimental and predicted differential scanning calorimetry (DSC) curves for palm oil (PO), peanut oil (PeO) and grapeseed oil (GO). The predicted curves are computed from the solid-liquid equilibrium modelling and direct minimization of the Gibbs free energy. For PO, the lower the scan rate, the better the agreement. The temperature transitions of PeO and GO were predicted with an average deviation of -0.72 degrees C and -1.29 degrees C respectively, in relation to experimental data from literature. However, the predicted curves showed other peaks not reported experimentally, as computed DSC curves correspond to equilibrium hypothesis which is reached experimentally for an infinitely small scan rate. The results revealed that predicted transitions temperatures using equilibrium hypotheses can be useful in pre-experimental evaluation of vegetable oils formulations seeking for desired melting profiles. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn2P2O7 can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host–guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode materials

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Effect of heating rate on melting and crystallization of polyamide fibres has been examined using differential scanning calorimetric (DSC) technique. Peak temperature for melting (T m) and crystallization (T k) get suppressed with the increase in the heating rate which has been explained on the basis of chain orientation. Heat of melting (DeltaH m) and crystallization (DeltaH k) have been measured.DeltaH m vs. T m shows a nonlinear dependence which has been explained on the basis of entropy change. Quantitative difference inDeltaH m andDeltaH k values has been explained on the basis of orientation and degradation of the polymer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lithium caesium sulphate has been reported to undergo a phase transition from the room temperature orthorhombic phase with space groupP cmn to a final phase with space groupP 22/n. Though a sharp anomaly in its physical properties has been found at 202.0;K, it was found that there was a need for careful investigations in the vicinity of 240 and 210.0;K. Since the changes in the crystal structure involve primarily a rotation of the SO4 tetrahedron about thec-axis and as this may be reflected both in the intensity and polarisation of the internal as well as external phonon modes, the laser Raman spectra of oriented single crystals of LiCsSO4 at different temperatures were investigated. For correlation and definite identification of the spectral features, its infrared absorption spectrum was also studied. An analysis of the intensities and polarizations of the internal modes of the sulphate ions reveals the change in symmetry of the crystal. The integrated intensity and peak height of thev 1 line, plotted against temperature show anomalous peaks in the region of the phase transition. Differential scanning calorimetric study gives the enthalpy change ΔH across the phase transition to be 0.213 kJ/mol.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(styrene peroxide) has been prepared and characterized. Nuclear magnetlc resonance (NMR) spectra Of the polymer show the shift Of aliphatic protons. Differential scanning calorimetric (DSC) and differential thermal analysis (DTA) results show anexothermic peak around 110 OC which is characteristic of peroxide decomposition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermal transport properties—thermal diffusivity, thermal conductivity and specific heat capacity—of potassium selenate crystal have been measured through the successive phase transitions, following the photo-pyroelectric thermal wave technique. The variation of thermal conductivity with temperature through the incommensurate (IC) phase of this crystal is measured. The enhancement in thermal conductivity in the IC phase is explained in terms of heat conduction by phase modes, and the maxima in thermal conductivity during transitions is due to enhancement in the phonon mean free path and the corresponding reduction in phonon scattering. The anisotropy in thermal conductivity and its variation with temperature are reported. The variation of the specific heat with temperature through the high temperature structural transition at 745 K is measured, following the differential scanning calorimetric method. By combining the results of photo-pyroelectric thermal wave methods and differential scanning calorimetry, the variation of the specific heat capacity with temperature through all the four phases of K2SeO4 is reported. The results are discussed in terms of phonon mode softening during transitions and phonon scattering by phase modes in the IC phase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this work was to study the glass transition, the glass transition of the maximally freeze-concentrated fractions, the ice melting and the gelatinization phenomenon in dispersions of starch prepared using glycerol- water solutions. The starch concentration was maintained constant at 50 g cassava starch/100 g starch dispersions, but the concentration of the glycerol solutions was variable (C-g= 20, 40, 60, 80 and 100 mass/mass%). The phase transitions of these dispersions were studied by calorimetric methods, using a conventional differential scanning calorimeter (DSC) and a more sensitive equipment (micro-DSC). Apparently, in the glycerol diluted solutions (20 and 40%), the glycerol molecules interacted strongly with the glucose molecules of starch. While in the more concentrated glycerol domains (C-g> 40%), the behaviour was controlled by migration of water molecules from the starch granules, due to a hypertonic character of glycerol, which affected all phase transitions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Estudos termogravimétricos e calorimétricos diferenciais para ditiocarbamatos de NH4+, Na+, Zn2+, Cd2+ e Pb2+, derivados de aminas cíclicas contendo nitrogênio como heteroátomos, foram realizados em atmosferas de ar e nitrogênio, para avaliar a influência da tensão angular dos anéis na decomposição térmica destes compostos, em relação à formação de tiocianatos metálicos como via de decomposição. Os intemediários formados foram caracterizados por difração de raios-X, tendo sido encontrados oxissulfatos de Zn2+, Cd2+ e Pb2+, sob atmosfera de ar, o que sugere a decomposição térmica nestas condições como via sintética para estes compostos. Os produtos de decomposição final obtidos foram sulfetos metálicos sob nitrogênio e óxidos dos metais de transição e sulfato de sódio sob ar. Entalpias de fusão são também descritas, com base nos resultados de DSC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to evaluate the penetration of endodontic sealer into the dentin tubules, the integrity of the sealer layer perimeter, and the sealer area at the apical third after different filling techniques by confocal laser scanning microscopy (CLSM). Forty-five mandibular premolars were mechanically prepared with ProTaper files, until F5 file. Thereafter, they were filled with an epoxy-resin sealer (AH Plus) mixed with Rhodamine B dye (0.1% proportion) and allocated in three groups: Group 1, single master cone; Group 2, cold lateral compaction; and Group 3, Thermafil. For confocal laser scanning microscopy analysis, the specimens were transversely sectioned at 4 mm from the apex. The images at x10 and x40 were analyzed by Imagetool 3.0 software. Significant differences were not found among the three experimental groups according the dentin-impregnate area by the sealer (P = 0.68) and between the sealer and root canal perimeter (P = 0.18). However, root canal filling techniques were significantly different when apical sealer areas were compared (P = 0.001). Thermafil group showed smaller sealer areas (8.09%) while cold lateral compaction and gutta-percha master cone showed similar areas (17.37 and 21.18%, respectively). The dentin-impregnated area was not dependent on the root canal filling technique. Single master cone, cold lateral condensation and Thermafil techniques presented integrity of the sealer perimeter close to 100% and Thermafil resulted in a significantly thinner sealer layer. Microsc. Res. Tech. 75:12771280, 2012. (C) 2012 Wiley Periodicals, Inc.