984 resultados para SCALAR ELECTRODYNAMICS
Resumo:
This work comprises a study upon the quantization and the renormalizability of the generalized electrodynamics of spinless charged particles (mesons), namely, the generalized scalar electrodynamics (GSQED4). The theory is quantized in the covariant framework of the Batalin-Fradkin-Vilkovisky method. Thereafter, the complete Green's functions are obtained through functional methods and a proper discussion on the theory's renormalizability is also given. Next, we present the computation and further discussion on the radiative correction at α order; and, as it turns out, an unexpected mP-dependent divergence on the mesonic sector of the theory is found. Furthermore, in order to show the effectiveness of the renormalization procedure on the present theory, we also give a diagrammatic discussion on the photon self-energy at α2 order, where we observe contributions from the meson self-energy function. Afterwards, we present the expressions of the counterterms and effective coupling of the theory, obtaining from the latter an energy range where the theory is defined by m2≤k2
Resumo:
The dynamical breaking of gauge symmetry in the supersymmetric quantum electrodynamics in three-dimensional spacetime is studied at two-loop approximation. At this level, the effective superpotential is evaluated in a supersymmetric phase. At one-loop order, we observe a generation of the Chern-Simons term due to a parity violating term present in the classical action. At two-loop order, the scalar background superfield acquires a nonvanishing vacuum expectation value, generating a mass term A(alpha)A(alpha) through the Coleman-Weinberg mechanism. It is observed that the mass of gauge superfield is predominantly an effect of the topological Chern-Simons term.
Resumo:
We enlarge the usual D = 3 N = 1 supergraph techniques to include the case of (explicitly or spontaneously) broken supersymmetric gauge theories. To illustrate the utility of these techniques, we calculate the two-loop effective potential of the SQED(3) by using the tadpole and the vacuum bubble methods. In these methods, to investigate the possibility of supersymmetry breaking, the superfields must be shifted by theta(alpha) dependent classical superfields (vacuum expectation values), what implies in the explicit breakdown of supersymmetry in the intermediate steps of the calculation. Nevertheless, after studying the minimum of the resulting effective potential, we find that supersymmetry is conserved, while gauge symmetry is dynamically broken, with a mass generated for the gauge superfield.
Resumo:
Using the superfield formalism, we study the dynamical breaking of gauge symmetry and super-conformal invariance in the N = 1 three-dimensional supersymmetric Chern-Simons model, coupled to a complex scalar superfield with a quartic self-coupling. This is an analogue of the conformally invariant Coleman-Weinberg model in four spacetime dimensions. We show that a mass for the gauge and matter superfields are dynamically generated after two-loop corrections to the effective superpotential. We also discuss the N = 2 extension of our work, showing that the Coleman-Weinberg mechanism in such model is not feasible, because it is incompatible with perturbation theory.
Resumo:
Within the superfield formalism, we study the ultraviolet properties of the three-dimensional super-symmetric quantum electrodynamics. The theory is shown to be finite at all loop orders in a particular gauge.
Resumo:
In this work we study the dynamical generation of mass in the massless N = 1 Wess-Zumino model in a three-dimensional spacetime. Using the tadpole method to compute the effective potential, we observe that supersymmetry is dynamically broken together with the discrete symmetry A(x) -> A(x). We show that this model, different from nonsupersymmetric scalar models, exhibits a consistent perturbative dynamical generation of mass after two-loop corrections to the effective potential.
Resumo:
The thesis deals with certain quantum field systems exhibiting spontaneous symmetry breaking and their response to temperature. These models find application in diverse branches such as particle physics, solid state physics and non~linear optics. The nature of phase transition that these systems may undergo is also investigated. The thesis contains seven chapters. The first chapter is introductory and gives a brief account of the various phenomena associated with spontaneous symmetry breaking. The chapter closes with anote on the effect of temperature on quantum field systems. In chapter 2, the spontaneous symmetry breaking phenomena are reviewed in more detail. Chapter 3, deals with the formulation of ordinary and generalised sine-Gordon field theories on a lattice and the study of the nature of phase transition occurring in these systems. In chapter 4, the effect of temperature on these models is studied, using the effective potential method. Chapter 5 is a continuation of this study for another model, viz, the m6 model. The nature of phase transition is also studied. Chapters 5 and 6 constitute a report of the investigations on the behaviour of coupling constants under thermal excitation D1 $4 theory, scalar electrodynamics, abelian and non-abelian gauge theories
Resumo:
Pós-graduação em Física - IFT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
By computing the two-loop effective potential of the D=3 N=1 supersymmetric Chern-Simons model minimally coupled to a massless self-interacting matter superfield, it is shown that supersymmetry is preserved, while the internal U(1) and the scale symmetries are broken at two-loop order, dynamically generating masses both for the gauge superfield and for the real component of the matter superfield.
Resumo:
Starting from linear equations for the complex scalar field, the two- and three-point Green's functions are obtained in the infrared approximation. We show that the infrared singularity factorizes in the vertex function as in spinor QED, reproducing in a simple and straightforward way the result of lengthy perturbative calculations.
Resumo:
Using the published KTeV samples of K(L) -> pi(+/-)e(-/+)nu and K(L) -> pi(+/-)mu(-/+)nu decays, we perform a reanalysis of the scalar and vector form factors based on the dispersive parametrization. We obtain phase-space integrals I(K)(e) = 0.15446 +/- 0.00025 and I(K)(mu) = 0.10219 +/- 0.00025. For the scalar form factor parametrization, the only free parameter is the normalized form factor value at the Callan-Treiman point (C); our best-fit results in InC = 0.1915 +/- 0.0122. We also study the sensitivity of C to different parametrizations of the vector form factor. The results for the phase-space integrals and C are then used to make tests of the standard model. Finally, we compare our results with lattice QCD calculations of F(K)/F(pi) and f(+)(0).
Resumo:
We study the question of stability of the ground state of a scalar theory which is a generalization of the phi(3) theory and has some similarity to gravity with a cosmological constant. We show that the ground state of the theory at zero temperature becomes unstable above a certain critical temperature, which is evaluated in closed form at high temperature.
Resumo:
We use the boundary effective theory approach to thermal field theory in order to calculate the pressure of a system of massless scalar fields with quartic interaction. The method naturally separates the infrared physics, and is essentially nonperturbative. To lowest order, the main ingredient is the solution of the free Euler-Lagrange equation with nontrivial (time) boundary conditions. We derive a resummed pressure, which is in good agreement with recent calculations found in the literature, following a very direct and compact procedure.
Resumo:
We show that CPT-even aetherlike Lorentz-breaking actions, for the scalar and electromagnetic fields, are generated via their appropriate Lorentz-breaking coupling to spinor fields, in three, four, and five space-time dimensions. Besides, we also show that aetherlike terms for the spinor field can be generated as a consequence of the same couplings. We discuss the dispersion relations in the theories with aetherlike Lorentz-breaking terms and find the tree-level effective (Breit) potential for fermion scattering and the one-loop effective potential corresponding to the action of the scalar field.