988 resultados para SCADA system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advancement of telemetry control for the water industry has increased the difficulty of 14 managing large volumes of nuisance alarms (i.e. alarms that do not require a response). The aim 15 of this study was to identify and reduce the number of nuisance alarms that occur for Northern 16 Ireland (NI) Water by carrying-out alarm duration analysis to determine the appropriate length of 17 persistence (an advanced alarm management tool) that could be applied. All data was extracted 18 from TelemWeb (NI Water’s telemetry monitoring system) and analysed in Excel. Over a 6 19 week period, an average of 40,000 alarms occurred per week. The alarm duration analysis, which 20 has never been implemented before by NI Water, found that an average of 57% of NI Water 21 alarms had a duration of <5 minutes. Applying 5 minute persistence; therefore, could prevent an 22 average 26,816 nuisance alarms per week. Most of these alarms were from wastewater assets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The large penetration of intermittent resources, such as solar and wind generation, involves the use of storage systems in order to improve power system operation. Electric Vehicles (EVs) with gridable capability (V2G) can operate as a means for storing energy. This paper proposes an algorithm to be included in a SCADA (Supervisory Control and Data Acquisition) system, which performs an intelligent management of three types of consumers: domestic, commercial and industrial, that includes the joint management of loads and the charge/discharge of EVs batteries. The proposed methodology has been implemented in a SCADA system developed by the authors of this paper – the SCADA House Intelligent Management (SHIM). Any event in the system, such as a Demand Response (DR) event, triggers the use of an optimization algorithm that performs the optimal energy resources scheduling (including loads and EVs), taking into account the priorities of each load defined by the installation users. A case study considering a specific consumer with several loads and EVs is presented in this paper.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A supervisory control and data acquisition (SCADA) system is an integrated platform that incorporates several components and it has been applied in the field of power systems and several engineering applications to monitor, operate and control a lot of processes. In the future electrical networks, SCADA systems are essential for an intelligent management of resources like distributed generation and demand response, implemented in the smart grid context. This paper presents a SCADA system for a typical residential house. The application is implemented on MOVICON™11 software. The main objective is to manage the residential consumption, reducing or curtailing loads to keep the power consumption in or below a specified setpoint, imposed by the costumer and the generation availability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

SCADA systems allow users to monitor and/or control physical devices, processes and events remotely. As these systems are critical to industrial processes, they are often run on highly reliable and dedicated hardware. Moving these SCADA systems to an Infrastructure as a Service (IaaS) cloud, allows for: cheaper deployments, system redundancy support, and increased uptime, however it is not clear to what degree clouds can support the real-time requirements. Experiments were carried out to examine the effects of using cloud resources and public networks have on SCADA systems. Using the "Life-and-Shift" approach, eclipseSCADA was deployed to the NeCTAR research cloud. Performance metrics were collected from the deployed eclipseSCADA system under different loads. From these collected metrics, a series of recommendations are provided for deploying and modifying a SCADA system on IaaS cloud resources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the last years, digital controllers became a very interesting alternative (low costs and higher accuracy) to the analogue or to hydrodynamic traditional controllers in water supply canal automation, in order to match water supply to water demands. This kind of hydraulic systems needs particular research for control applications because they are big scale systems, open and characterized by big delays and great inertia. This paper presents several digital control modes tested in an experimental canal that will be used as a research platform on the automatic canal control domain. The canal operation and their control modes selection are supervised by a SCADA system developed and configured for this particular canal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research is aimed at addressing problems in the field of asset management relating to risk analysis and decision making based on data from a Supervisory Control and Data Acquisition (SCADA) system. It is apparent that determining risk likelihood in risk analysis is difficult, especially when historical information is unreliable. This relates to a problem in SCADA data analysis because of nested data. A further problem is in providing beneficial information from a SCADA system to a managerial level information system (e.g. Enterprise Resource Planning/ERP). A Hierarchical Model is developed to address the problems. The model is composed of three different Analyses: Hierarchical Analysis, Failure Mode and Effect Analysis, and Interdependence Analysis. The significant contributions from the model include: (a) a new risk analysis model, namely an Interdependence Risk Analysis Model which does not rely on the existence of historical information because it utilises Interdependence Relationships to determine the risk likelihood, (b) improvement of the SCADA data analysis problem by addressing the nested data problem through the Hierarchical Analysis, and (c) presentation of a framework to provide beneficial information from SCADA systems to ERP systems. The case study of a Water Treatment Plant is utilised for model validation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates how to interface the wireless application protocol (WAP) architecture to the SCADA system running distributed network protocol (DNP) in a power process plant. DNP is a well-developed protocol to be applied in the supervisory control and data acquisition (SCADA) system but the system control centre and remote terminal units (RTUs) are presently connected through a local area network. The conditions in a process plant are harsh and the site is remote. Resources for data communication are difficult to obtain under these conditions, thus, a wireless channel communication through a mobile phone is practical and efficient in a process plant environment. The mobile communication industries and the public have a strong interest in the WAP technology application in mobile phone networks and the WAP application programming interface (API) in power industry applications is one area that requires extensive investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gold Coast Water is responsible for the management of the water and wastewater assets of the City of the Gold Coast on Australia’s east coast. Treated wastewater is released at the Gold Coast Seaway on an outgoing tide in order for the plume to be dispersed before the tide changes and renters the Broadwater estuary. Rapid population growth over the past decade has placed increasing demands on the receiving waters for the release of the City’s effluent. The Seaway SmartRelease Project is designed to optimise the release of the effluent from the City’s main wastewater treatment plant in order to minimise the impact of the estuarine water quality and maximise the cost efficiency of pumping. In order to do this an optimisation study that involves water quality monitoring, numerical modelling and a web based decision support system was conducted. An intensive monitoring campaign provided information on water levels, currents, winds, waves, nutrients and bacterial levels within the Broadwater. These data were then used to calibrate and verify numerical models using the MIKE by DHI suite of software. The decision support system then collects continually measured data such as water levels, interacts with the WWTP SCADA system, runs the models in forecast mode and provides the optimal time window to release the required amount of effluent from the WWTP. The City’s increasing population means that the length of time available for releasing the water with minimal impact may be exceeded within 5 years. Optimising the release of the treated water through monitoring, modelling and a decision support system has been an effective way of demonstrating the limited environmental impact of the expected short term increase in effluent disposal procedures. (PDF contains 5 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

介绍了基于CAN总线的多种监控系统联网设计,该设计应用DDE(动态数据交换)技术实现VB程序与多种组态软件开发的SCADA系统的数据交换,通过调用动态链接库函数完成总线的数据通信,从而搭建了工业现场的信息化管理平台.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this abstract is presented an energy management system included in a SCADA system existent in a intelligent home. The system control the home energy resources according to the players definitions (electricity consumption and comfort levels), the electricity prices variation in real time mode and the DR events proposed by the aggregators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent and future changes in power systems, mainly in the smart grid operation context, are related to a high complexity of power networks operation. This leads to more complex communications and to higher network elements monitoring and control levels, both from network’s and consumers’ standpoint. The present work focuses on a real scenario of the LASIE laboratory, located at the Polytechnic of Porto. Laboratory systems are managed by the SCADA House Intelligent Management (SHIM), already developed by the authors based on a SCADA system. The SHIM capacities have been recently improved by including real-time simulation from Opal RT. This makes possible the integration of Matlab®/Simulink® real-time simulation models. The main goal of the present paper is to compare the advantages of the resulting improved system, while managing the energy consumption of a domestic consumer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a methodology based on Unconstrained Binary Programming (UBP) model and Genetic Algorithms (GAs) is proposed for estimating fault sections in automated distribution substations. The UBP model, established by using the parsimonious set covering theory, looks for the match between the relays' protective alarms informed by the SCADA system and their expected states. The GA is developed to minimize the UBP model and estimate the fault sections in a swift and reliable manner. The proposed methodology is tested by utilizing a real-life automated distribution substation. Control parameters of the GA are tuned to achieve maximum computational efficiency and reduction of processing time. Results show the potential and efficiency of the methodology for estimating fault section in real-time at Distribution Control Centers. ©2009 IEEE.