940 resultados para SANDWICH BEAMS
Resumo:
This work presents a performance analysis of multimodal passive vibration control of a sandwich beam using shear piezoelectric materials, embedded in a sandwich beam core, connected to independent resistive shunt circuits. Shear piezoelectric actuators were recently shown to be more interesting for higher frequencies and stiffer structures. In particular, for shunted damping, it was shown that equivalent material loss factors of up to 31% can be achieved by optimizing the shunt circuit. In the present work, special attention is given to the design of multimodal vibration control through independent shunted shear piezoelectric sensors. In particular, a parametric analysis is performed to evaluate optimal configurations for a set of modes to be damped. Then, a methodology to evaluate the modal damping resulting from each shunted piezoelectric sensor is presented using the modal strain energy method. Results show that modal damping factors of 1%-2% can be obtained for three selected vibration modes.
Resumo:
Sandwich geometries, mainly in the form of panels and beams, are commonly applied in various transportation industries, such as aerospace, aeronautic and automotive. Sandwich geometries represent important advantages in structural applications, namely high specific stiffness, low weight, and possibility of design optimization prior to manufacturing. The aim of this paper is to uncover the influence of the number of reinforcements (ribs), and of the thickness on the mechanical behavior of all-metal sandwich panels subjected to uncoupled bending and torsion loadings. In this study, four geometries are compared. The orientation of the reinforcements and the effect of transversal ribs are also considered in this study. It is shown that the all the relations are non-linear, despite the elastic nature of the analysis in the Finite Element software ANSYS MECHANICAL APDL.
Resumo:
This work extends a previously presented refined sandwich beam finite element (FE) model to vibration analysis, including dynamic piezoelectric actuation and sensing. The mechanical model is a refinement of the classical sandwich theory (CST), for which the core is modelled with a third-order shear deformation theory (TSDT). The FE model is developed considering, through the beam length, electrically: constant voltage for piezoelectric layers and quadratic third-order variable of the electric potential in the core, while meclianically: linear axial displacement, quadratic bending rotation of the core and cubic transverse displacement of the sandwich beam. Despite the refinement of mechanical and electric behaviours of the piezoelectric core, the model leads to the same number of degrees of freedom as the previous CST one due to a two-step static condensation of the internal dof (bending rotation and core electric potential third-order variable). The results obtained with the proposed FE model are compared to available numerical, analytical and experimental ones. Results confirm that the TSDT and the induced cubic electric potential yield an extra stiffness to the sandwich beam. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A multiobjective approach for optimization of passive damping for vibration reduction in sandwich structures is presented in this paper. Constrained optimization is conducted for maximization of modal loss factors and minimization of weight of sandwich beams and plates with elastic laminated constraining layers and a viscoelastic core, with layer thickness and material and laminate layer ply orientation angles as design variables. The problem is solved using the Direct MultiSearch (DMS) solver for derivative-free multiobjective optimization and solutions are compared with alternative ones obtained using genetic algorithms.
Resumo:
Several types of internally reinforced thin-walled beams are subjected to a feasibility evaluation of its mechanical behavior for industrial applications. The adapting of already existing efficient sandwich geometries to hollow-box beams of larger dimensions may reveal promising results. Novel types of sandwich beams under bending and torsion uncoupled loadings are studied in terms of stiffness behavior in static analysis. For the analysis of the solutions, the models are built using the Finite Element Method (FEM) software ANSYS Mechanical APDL. The feasibility of the novel beams was determined by the comparison of the stiffness behavior of the novel hollow-box beams with conventional hollow-box beams. An efficiency parameter was defined in order to determine the feasibility. It is found that the novel geometries represent an excellent improvement under bending loadings, better than under torsion loadings. Nevertheless, for bending and torsion combined loadings, if bending loads are predominant, the beams can still be interesting for some applications, in particular those with mobile parts.
Resumo:
The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hybrid active-passive damping treatments combine the reliability, low cost and robustness of viscoelastic damping treatments and the high-performance, modal selective and adaptive piezoelectric active control. Numerous hybrid damping treatments have been reported in the literature. They differ mainly by the relative positions of viscoelastic treatments, sensors and piezoelectric actuators. In this work we present an experimental analysis of three active-passive damping design configurations applied to a cantilever beam. In particular, two design configurations based on the extension mode of piezoelectric actuators combined with viscoelastic constrained layer damping treatments and one design configuration with shear piezoelectric actuators embedded in a sandwich beam with viscoelastic core are analyzed. For comparison purposes, a purely active design configuration with an extension piezoelectric actuator bonded to an elastic beam is also analyzed. The active-passive damping performance of the four design configurations is compared. Results show that active-passive design configurations provide more reliable and wider-range damping performance than the purely active configuration.
Resumo:
Assessing a full set of mechanical properties is a rather complicate task in the case of foams, especially if material models must be calibrated with these results. Many issues, for example anisotropy and heterogeneity, influence the mechanical behavior. This article shows through experimental analyses how the microstructure affects different experimental setups and it also quantifies the degree of anisotropy of a poly(vinyl chloride) foam. Monotonic and cyclic experimental tests were carried out using standard compression specimens and non-standard tensile specimens. Results are complemented and compared with the aid of a digital image correlation technique and scanning electron microscopy analyses. Mechanical properties (e.g., elastic and plastic Poisson's ratios) are evaluated for compression and tensile tests, for two different material directions (normal and in-plane). The material is found to be transversely isotropic. Differences in the results of the mechanical properties can be as high as 100%, or even more depending on the technique used and the loading direction. Also, the experimental analyses show how the material's microstructure behavior, like the evolution of the herein identified yield fronts and a spring back phenomenon, can influence the phenomenological response and the failure mechanisms as well as the hardening curves. POLYM. ENG. SCI., 52:2654-2663, 2012. (C) 2012 Society of Plastics Engineers
Optimización de la densidad de energía en vigas de material compuesto (PRF) sometidas a flexión pura
Resumo:
Las necesidades energéticas actuales requieren el desarrollo de tecnologías eficaces y eficientes en producción, transporte y distribución de energía. Estas necesidades han impulsado nuevos desarrollos en el ámbito energético, entre los cuales se encuentran sistemas de almacenamiento de energía. El avance en ingeniería de materiales permite pensar en la posibilidad de almacenamiento mediante deformación elástica de vigas. Concretamente se parte de un concepto de mecanismo acumulador de energía basado en la deformación elástica de resortes espirales a torsión. Dichos resortes se pueden considerar como elementos vigas sometidos a flexión pura y grandes deflexiones. Esta Tesis de centra en el diseño y optimización de estos elementos con el fin de maximizar la densidad de energía que son capaces de absorber. El proceso de optimización comienza con la identificación del factor crítico del que depende dicho proceso, en este caso de trata de la densidad de energía. Dicho factor depende de la geometría de la sección resistente y del material empleado en su construcción. En los últimos años ha existido un gran desarrollo de los materiales compuestos de tipo polimérico reforzados con fibras (PRF). Estos materiales están sustituyendo gradualmente a otros materiales, como los metales, debido principalmente a su excelente relación entre propiedades mecánicas y peso. Por otro lado, analizando las posibles geometrías para la sección resistente, se observó que la más adecuada es una estructura tipo sándwich. Se implementa así un procedimiento de diseño de vigas sándwich sometidas a flexión pura, con las pieles fabricadas en materiales compuestos tipo PRF y un núcleo que debe garantizar el bajo peso de la estructura. Se desarrolla así un procedimiento sistemático que se puede particularizar dependiendo de los parámetros de entrada de la viga, y que tiene en cuenta y analiza la aparición de todos los posibles modos de fallo posibles. Así mismo se desarrollan una serie de mapas o ábacos de diseño que permiten seleccionar rápidamente las dimensiones preliminares de la viga. Finalmente se llevan a cabo ensayos que permiten, por un lado, validar el concepto del mecanismo acumulador de energía a través del ensayo de un muelle con sección monolítica, y por otro validar los distintos diseños de vigas sándwich propuestos y mostrar el incremento de la densidad de energía con respecto a la alternativa monolítica. Como líneas futuras de investigación se plantean la investigación en nuevos materiales, como la utilización de nanotubos de carbono, y la optimización del mecanismo de absorción de energía; optimizando el mecanismo de absorción a flexión pura e implementando sistemas que permitan acumular energía mediante la deformación elástica debida a esfuerzos de tracción-compresión. ABSTRACT Energy supply requires the development of effective and efficient technologies for the production, transport and distribution of energy. In recent years, many energy storage systems have been developed. Advances in the field of materials engineering has allowed the development of new concepts as the energy storage by elastic deformation of beams. Particularly, in this Thesis an energy storage device based on the elastic deformation of torsional springs has been studied. These springs can be considered as beam elements subjected to pure bending loads and large deflections. This Thesis is focused on the design and optimization of these beam elements in order to maximize its density of stored energy. The optimization process starts with the identification of the critical factors for the elastic energy storage: the density. This factor depends on the geometry of the cross section of the beam and the materials from which it is made. In the last 20 years, major advances in the field of composite materials have been made, particularly in the field of fiber reinforced polymers (FRP). This type of material is substituting gradually metallic materials to their excellent weight-mechanical properties ratio. In the other side, several possible geometries are analyzed for its use in the cross section of the beam; it was concluded that the best option, for maximum energy density, is using a sandwich beam. A design procedure for sandwich beams with skins made up with FRP composites and a light weight core is developed. This procedure can be particularized for different input parameters and it analyzes all the possible failure modes. Abacus and failure mode maps have been developed in order to simplify the design process. Finally several tested was made. Firstly, a prototype of the energy storage system which uses a monolithic composite beam was tested in order to validate the concept of the energy storage by elastic deformation. After that sandwich beam samples are built and tested, validating the design and showing the increase of energy density with respect to the monolithic beam. As futures research lines the following are proposed: research in new materials, as carbon nanotubes; and the optimization of the energy storage mechanism, that means optimizing the pure bending storage mechanism and developing new ones based on traction-compression mechanisms.
Resumo:
Dual-phase functionally graded materials are a particular type of composite materials whose properties are tailored to vary continuously, depending on its two constituent's composition distribution, and which use is increasing on the most diverse application fields. These materials are known to provide superior thermal and mechanical performances when compared to the traditional laminated composites, exactly because of this continuous properties variation characteristic, which enables among other advantages smoother stresses distribution profile. In this paper we study the influence of different homogenization schemes, namely the schemes due to Voigt, Hashin-Shtrikman and Mod-Tanaka, which can be used to obtain bounds estimates for the material properties of particulate composite structures. To achieve this goal we also use a set of finite element models based on higher order shear deformation theories and also on first order theory. From the studies carried out, on linear static analyses and on free vibration analyses, it is shown that the bounds estimates are as important as the deformation kinematics basis assumed to analyse these types of multifunctional structures. Concerning to the homogenization schemes studied, it is shown that Mori-Tanaka and Hashin-Shtrikman estimates lead to less conservative results when compared to Voigt rule of mixtures.
Resumo:
Many new viscoelastic materials have been developed recently to help improve noise and vibration levels in mechanical structures for applications in automobile and aeronautical industry. The viscoelastic layer treatment applied to solid metal structures modifies two main properties which are related to the mass distribution and the damping mechanism. The other property controlling the dynamics of a mechanical system is the stiffness that does not change much with the viscoelastic material. The model of such system is usually complex, because the viscoelastic material can exhibit nonlinear behavior, in contrast with the many available tools for linear dynamics. In this work, the dynamic behavior of sandwich beam is modeled by finite element method using different element types which are then compared with experimental results developed in the laboratory for various beams with different viscoelastic layer materials. The finite element model is them updated to help understand the effects in the damping for various natural frequencies and the trade-off between attenuation and the mass add to the structure.
Resumo:
Laminated glass is a sandwich element consisting of two or more glass sheets, with one or more interlayers of polyvinyl butyral (PVB). The dynamic response of laminated glass beams and plates can be predicted using analytical or numerical models in which the glass and the PVB are usually modelled as linear-elastic and linear viscoelastic materials, respectively. In this work the dynamic behavior of laminated glass beams are predicted using a finite element model and the analytical model of Ross-Kerwin-Ungar. The numerical and analytical results are compared with those obtained by operational modal analysis performed at different temperatures.
Resumo:
This study investigates the effect of foam core density and skin type on the behaviour of sandwich panels as structural beams tested in four-point bending and axially compressed columns of varying slenderness and skin thickness. Bio-composite unidirectional flax fibre-reinforced polymer (FFRP) is compared to conventional glass-FRP (GFRP) as the skin material used in conjunction with three polyisocyanurate (PIR) foam cores with densities of 32, 64 and 96 kg/m3. Eighteen 1000 mm long flexural specimens were fabricated and tested to failure comparing the effects of foam core density between three-layer FFRP skinned and single-layer GFRP skinned panels. A total of 132 columns with slenderness ratios (kLe/r) ranging from 22 to 62 were fabricated with single-layer GFRP skins, and one-, three-, and five-layer FFRP skins for each of the three foam core densities. The columns were tested to failure in concentric axial compression using pinned-end conditions to compare the effects of each material type and panel height. All specimens had a foam core cross-section of 100x50 mm with 100 mm wide skins of equal thickness. In both flexural and axial loading, panels with skins comprised of three FFRP layers showed equivalent strength to those with a single GFRP layer for all slenderness ratios and core densities examined. Doubling the core density from 32 to 64 kg/m3 and tripling the density to 96 kg/m3 led to flexural strength increases of 82 and 213%, respectively. Both FFRP and GFRP columns showed a similar variety of failure modes related to slenderness. Low slenderness of 22-25 failed largely due to localized single skin buckling, while those with high slenderness of 51-61 failed primarily by global buckling followed by secondary skin buckling. Columns with intermediate slenderness experienced both localized and global failure modes. High density foam cores more commonly exhibited core shear failure. Doubling the core density of the columns resulted in peak axial load increases, across all slenderness ratios, of 73, 56, 72 and 71% for skins with one, three and five FFRP layers, and one GFRP layer, respectively. Tripling the core density resulted in respective peak load increases of 116, 130, 176 and 170%.
Resumo:
With a view toward investigating the feeding behavior of Culicidae mosquitoes from an area of epizootic yellow fever transmission in the municipalities of Garruchos and Santo Antônio das Missões, Rio Grande do Sul State, Brazil, specimens were collected by aspiration from September 2005 to April 2007. The engorged females were submitted to blood meal identification by enzyme-linked immunosorbent assay (ELISA). A total of 142 blood-engorged samples were examined for human or monkey blood through species-specific IgG. Additional tests for specificity utilizing isotypes IgG1 and IgG4 of human monoclonal antibodies showed that only anti-human IgG1 was effective in recognizing blood meals of human origin. The results indicated a significant difference (p = 0.027) in detection patterns in samples of Haemagogus leucocelaenus recorded from human blood meals at Santo Antônio das Missões, which suggests some degree of exposure, since it was an area where epizootic outbreaks have been reported.
Resumo:
The knowledge of mosquitoes Culicidae host feeding patterns is basic to understand the roles of different species and to indicate their importance in the epidemiology of arthropod-borne diseases. A laboratory assay was developed aiming at standardizing the biotin-avidin sandwich enzyme-linked immunosorbent assay, which was unprecedented for mosquito blood meal identification. The enzyme-linked immunosorbent assay (ELISA) activity was evaluated by the detection of titers on each sample of the 28 blood-fed Culex quinquefasciatus. In light of the high sensitivity that the technique permits, by means of small quantities of specific antibodies commercially provided and phosphatase substrate which reinforces additional dilutions, human and rat blood meals were readily identified in all laboratory-raised Culex quinquefasciatus tested. The assay was effective to detect human blood meal dilutions up to 1:4,096, which enables the technique to be applied in field studies. Additionally, the present results indicate a significant difference between the detection patterns recorded from human blood meal which corroborate the results of host feeding patterns.