2 resultados para S2CL2


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CCSD(T) with a series of correlation consistent basis up to quadruple-zeta is used to investigate the structures, vibrational spectra, relative stability, heats of formation, and barrier to isomerization of S=SBr2 and BrSSBr. It represents the most accurate and detailed characterization of these molecules to date. We show that the frequency mode at 302 cm(-1), detected in various studies and assigned to impurities by some authors, and to the anti-symmetric SBr stretch in BrSSBr by others, thus in fact corresponds to the anti-symmetric SBr stretch in the elusive S=SBr2 species; it thus corroborates and complements an earlier partial IR spectra study attributable to S=SBr2. Including corrections for relativistic and core-valence correlation effects, we also predict 26.33 (12.74) kcal/mol for Delta H-f (298.15 K) of S=SBr2 (BrSSBr). For the S=SBr2 -> BrSSBr reaction, our best estimates for the Gibbs free energy and the enthalpy of the reaction at 298.15 K are -13.71 and -13.44 kcal/mol, respectively. For a value of Delta G(#) equal to 23.52 kcal/mol, we estimate a TST rate constant, at 298.15 K, of 3.57 x 10(-5) s(-1). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is focused on the synthesis, characterization and reactivity of new low nuclearity iron carbide carbonyl clusters. In particular, the oxidation of the highly reduced monocarbide tetraanionic cluster [Fe6C(CO)15]4- was studied in details using different oxidants ([Cp2Fe][PF6], HBF4·Et2O, MeI and EtI), different stoichiometries and experimental conditions. Different products were obtained depending on the reaction conditions, among which previously reported [Fe6C(CO)16]2- and [Fe5C(CO)14]2-, and new [Fe6C(CO)14(CO)13]4- and [Fe5C(CO)13(COMe)]3- were isolated and fully characterized. In the second part of this study, the reactions of [Fe6C(CO)15]4- with organic or inorganic molecules containing sulphur (S8, S2Cl2 and PhSH) were investigated aiming at introducing S-atoms within the structure of iron carbide carbonyl clusters. In particular, the reaction of [Fe6C(CO)15]4- with PhSH afforded the new [Fe6C(CO)14(SPh)]3- cluster. Conversely, using S8 and S2Cl2, oxidation of [Fe6C(CO)15]4- occurred following a path similar to that observed with other oxidizing agents. All these species have been analyzed by Single Crystal X-ray diffraction (SC-XRD) and IR spectroscopy.