1000 resultados para Sèries temporals -- Anàlisi
Resumo:
In this paper we examine the out-of-sample forecast performance of high-yield credit spreads regarding real-time and revised data on employment and industrial production in the US. We evaluate models using both a point forecast and a probability forecast exercise. Our main findings suggest the use of few factors obtained by pooling information from a number of sector-specific high-yield credit spreads. This can be justified by observing that, especially for employment, there is a gain from using a principal components model fitted to high-yield credit spreads compared to the prediction produced by benchmarks, such as an AR, and ARDL models that use either the term spread or the aggregate high-yield spread as exogenous regressor. Moreover, forecasts based on real-time data are generally comparable to forecasts based on revised data. JEL Classification: C22; C53; E32 Keywords: Credit spreads; Principal components; Forecasting; Real-time data.
Resumo:
In this paper we consider extensions of smooth transition autoregressive (STAR) models to situations where the threshold is a time-varying function of variables that affect the separation of regimes of the time series under consideration. Our specification is motivated by the observation that unusually high/low values for an economic variable may sometimes be best thought of in relative terms. State-dependent logistic STAR and contemporaneous-threshold STAR models are introduced and discussed. These models are also used to investigate the dynamics of U.S. short-term interest rates, where the threshold is allowed to be a function of past output growth and inflation.
Resumo:
Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants
Resumo:
En el presente trabajo se recopilan y extienden diversas series históricas de los principales agregados nacionales de la Encuesta de Población Activa (EPA) y se construyen nuevas series anuales homogéneas de las mismas variables para el período 1964-2009 corrigiendo algunas de las rupturas que persisten en las series históricas más recientes del INE.
Resumo:
To detect directional couplings from time series various measures based on distances in reconstructed state spaces were introduced. These measures can, however, be biased by asymmetries in the dynamics' structure, noise color, or noise level, which are ubiquitous in experimental signals. Using theoretical reasoning and results from model systems we identify the various sources of bias and show that most of them can be eliminated by an appropriate normalization. We furthermore diminish the remaining biases by introducing a measure based on ranks of distances. This rank-based measure outperforms existing distance-based measures concerning both sensitivity and specificity for directional couplings. Therefore, our findings are relevant for a reliable detection of directional couplings from experimental signals.
Resumo:
There is growing evidence that nonlinear time series analysis techniques can be used to successfully characterize, classify, or process signals derived from realworld dynamics even though these are not necessarily deterministic and stationary. In the present study we proceed in this direction by addressing an important problem our modern society is facing, the automatic classification of digital information. In particular, we address the automatic identification of cover songs, i.e. alternative renditions of a previously recorded musical piece. For this purpose we here propose a recurrence quantification analysis measure that allows tracking potentially curved and disrupted traces in cross recurrence plots. We apply this measure to cross recurrence plots constructed from the state space representation of musical descriptor time series extracted from the raw audio signal. We show that our method identifies cover songs with a higher accuracy as compared to previously published techniques. Beyond the particular application proposed here, we discuss how our approach can be useful for the characterization of a variety of signals from different scientific disciplines. We study coupled Rössler dynamics with stochastically modulated mean frequencies as one concrete example to illustrate this point.
Resumo:
Intuitively, music has both predictable and unpredictable components. In this work we assess this qualitative statement in a quantitative way using common time series models fitted to state-of-the-art music descriptors. These descriptors cover different musical facets and are extracted from a large collection of real audio recordings comprising a variety of musical genres. Our findings show that music descriptor time series exhibit a certain predictability not only for short time intervals, but also for mid-term and relatively long intervals. This fact is observed independently of the descriptor, musical facet and time series model we consider. Moreover, we show that our findings are not only of theoretical relevance but can also have practical impact. To this end we demonstrate that music predictability at relatively long time intervals can be exploited in a real-world application, namely the automatic identification of cover songs (i.e. different renditions or versions of the same musical piece). Importantly, this prediction strategy yields a parameter-free approach for cover song identification that is substantially faster, allows for reduced computational storage and still maintains highly competitive accuracies when compared to state-of-the-art systems.
Resumo:
We analyse the determinants of firm entry in developing countries using Argentina as an illustrative case. Our main finding is that although most of the regional determinants used in previous studies analysing developed countries are also relevant here, there is a need for additional explanatory variables that proxy for the specificities of developing economies (e.g., poverty, informal economy and idle capacity).We also find evidence of a core-periphery pattern in the spatial structure of entry that seems to be mostly driven by differences in agglomeration economies. Since regional policies aiming to attract new firms are largely based on evidence from developed countries, our results raise doubts about the usefulness of such policies when applied to developing economies. JEL classification: R12, R30, C33. Key words: Firm entry, Argentina, count data models.
Resumo:
This paper re-examines the null of stationary of real exchange rate for a panel of seventeen OECD developed countries during the post-Bretton Woods era. Our analysis simultaneously considers both the presence of cross-section dependence and multiple structural breaks that have not received much attention in previous panel methods of long-run PPP. Empirical results indicate that there is little evidence in favor of PPP hypothesis when the analysis does not account for structural breaks. This conclusion is reversed when structural breaks are considered in computation of the panel statistics. We also compute point estimates of half-life separately for idiosyncratic and common factor components and find that it is always below one year.
Resumo:
Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants
Resumo:
El Projecte que aquí es presenta, té la voluntat d’aprofundir en una nova metodologia -emprada en altres països del nostre entorn europeu-, consistent en l’encreuament de varies fonts d’informació. En aquest cas, les dues principals i, fins els moment, utilitzades en les anàlisis de l’estat de la seguretat a Catalunya; la pròpiament estreta del registre policial i la de la victimització i la percepció ciutadana. Aquest anàlisi se centra en l’àmbit territorial de la ciutat de Barcelona i en els seus 10 districtes. De manera més específica, l’anàlisi pretén mostrar la correlació entre ambdós resultats i la consistència dels diferents indicadors triats, tant respecte el nivell de victimització com respecte la percepció de seguretat i la valoració de la policia. Aquest estudi, doncs, pretén esdevenir una eina útil per a la diagnosi, ja sigui respecte un determinat àmbit territorial o tipologia delinqüencial, mitjançant la definició de determinats blocs d’indicadors prou fiables i, que alhora, puguin ajudar a la presa de decisions dels òrgans directius de l’Ajuntament de Barcelona i del Departament d’Interior, Relacions Institucionals i Participació. Així com senyalar, en quins àmbits concrets és aconsellable l’estudi, la planificació i el desenvolupament de polítiques públiques de seguretat. Alhora que, amb l’establiment d’aquest estudi de manera periòdica, es podrà disposar d’unes sèries temporals suficientment estables, així com facilitar el seguiment, l’evolució i avaluació de l’àmbit concret analitzat.
Resumo:
This paper provides evidence on the sources of co-movement in monthly US and UK stock price movements by investigating the role of macroeconomic and financial variables in a bivariate system with time-varying conditional correlations. Crosscountry communality in response is uncovered, with changes in the US Federal Funds rate, UK bond yields and oil prices having similar negative effects in both markets. Other variables also play a role, especially for the UK market. These effects do not, however, explain the marked increase in cross-market correlations observed from around 2000, which we attribute to time variation in the correlations of shocks to these markets. A regime-switching smooth transition model captures this time variation well and shows the correlations increase dramatically around 1999-2000. JEL classifications: C32, C51, G15 Keywords: international stock returns, DCC-GARCH model, smooth transition conditional correlation GARCH model, model evaluation.
Resumo:
This paper measures the degree in stock market integration between five Eastern European countries and the Euro-zone. A potentially gradual transition in correlations is accommodated by smooth transition conditional correlation models. We find that the correlation between stock markets has increased from 2001 to 2007. In particular, the Czech and Polish markets show a higher correlation to the Euro-zone. However, this is not a broad-based phenomenon across Eastern Europe. We also find that the increase in correlations is not a reflection of a world-wide phenomenon of financial integration but appears to be specific to the European market. JEL classifications: C32; C51; F36; G15 Keywords: Multivariate GARCH; Smooth Transition Conditional Correlation; Stock Return Comovement; New EU Members.