952 resultados para Run-Time Code Generation, Programming Languages, Object-Oriented Programming
Resumo:
A lightweight Java application suite has been developed and deployed allowing collaborative learning between students and tutors at remote locations. Students can engage in group activities online and also collaborate with tutors. A generic Java framework has been developed and applied to electronics, computing and mathematics education. The applications are respectively: (a) a digital circuit simulator, which allows students to collaborate in building simple or complex electronic circuits; (b) a Java programming environment where the paradigm is behavioural-based robotics, and (c) a differential equation solver useful in modelling of any complex and nonlinear dynamic system. Each student sees a common shared window on which may be added text or graphical objects and which can then be shared online. A built-in chat room supports collaborative dialogue. Students can work either in collaborative groups or else in teams as directed by the tutor. This paper summarises the technical architecture of the system as well as the pedagogical implications of the suite. A report of student evaluation is also presented distilled from use over a period of twelve months. We intend this suite to facilitate learning between groups at one or many institutions and to facilitate international collaboration. We also intend to use the suite as a tool to research the establishment and behaviour of collaborative learning groups. We shall make our software freely available to interested researchers.
Resumo:
The locative project is in a condition of emergence, an embryonic state in which everything is still up for grabs, a zone of consistency yet to emerge. As an emergent practice locative art, like locative media generally, it is simultaneously opening up new ways of engaging in the world and mapping its own domain. (Drew Hemment, 2004) Artists and scientists have always used whatever emerging technologies existed at their particular time throughout history to push the boundaries of their fields of practice. The use of new technologies or the notion of ‘new’ media is neither particularly new nor novel. Humans are adaptive, evolving and will continue to invent and explore technological innovation. This paper asks the following questions: what role does adaptive and/or intelligent art play in the future of public spaces, and how does this intervention alter the relationship between theory and practice? Does locative or installation-based art reach more people, and does ‘intelligent’ or ‘smart’ art have a larger role to play in the beginning of this century? The speakers will discuss their current collaborative prototype and within the presentation demonstrate how software art has the potential to activate public spaces, and therefore contribute to a change in spatial or locative awareness. It is argued that the role and perhaps even the representation of the audience/viewer is left altered through this intervention. 1. A form of electronic imagery created by a collection of mathematically defined lines and/or curves. 2. An experiential form of art which engages the viewer both from within a specific location and in response to their intentional or unintentional input.
Resumo:
Object-oriented modeling is spreading in current simulation of wastewater treatments plants through the use of the individual components of the process and its relations to define the underlying dynamic equations. In this paper, we describe the use of the free-software OpenModelica simulation environment for the object-oriented modeling of an activated sludge process under feedback control. The performance of the controlled system was analyzed both under normal conditions and in the presence of disturbances. The object-oriented described approach represents a valuable tool in teaching provides a practical insight in wastewater process control field.
Resumo:
New generation embedded systems demand high performance, efficiency and flexibility. Reconfigurable hardware can provide all these features. However the costly reconfiguration process and the lack of management support have prevented a broader use of these resources. To solve these issues we have developed a scheduler that deals with task-graphs at run-time, steering its execution in the reconfigurable resources while carrying out both prefetch and replacement techniques that cooperate to hide most of the reconfiguration delays. In our scheduling environment task-graphs are analyzed at design-time to extract useful information. This information is used at run-time to obtain near-optimal schedules, escaping from local-optimum decisions, while only carrying out simple computations. Moreover, we have developed a hardware implementation of the scheduler that applies all the optimization techniques while introducing a delay of only a few clock cycles. In the experiments our scheduler clearly outperforms conventional run-time schedulers based on As-Soon-As-Possible techniques. In addition, our replacement policy, specially designed for reconfigurable systems, achieves almost optimal results both regarding reuse and performance.
Resumo:
P-NET is a fieldbus industrial communication standard, which uses a Virtual Token Passing MAC mechanism. In this paper we establish pre-run-time schedulability conditions for supporting real-time traffic with P-NET. Essentially we provide formulae to evaluate the minimum message deadline, ensuring the transmission of real-time messages within a maximum time bound
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
The new generations of SRAM-based FPGA (field programmable gate array) devices are the preferred choice for the implementation of reconfigurable computing platforms intended to accelerate processing in real-time systems. However, FPGA's vulnerability to hard and soft errors is a major weakness to robust configurable system design. In this paper, a novel built-in self-healing (BISH) methodology, based on run-time self-reconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the dynamic reconfiguration features offered by new FPGA families. Meanwhile, modular redundancy assures that the system still works correctly
Resumo:
Dynamically reconfigurable systems have benefited from a new class of FPGAs recently introduced into the market, which allow partial and dynamic reconfiguration at run-time, enabling multiple independent functions from different applications to share the same device, swapping resources as needed. When the sequence of tasks to be performed is not predictable, resource allocation decisions have to be made on-line, fragmenting the FPGA logic space. A rearrangement may be necessary to get enough contiguous space to efficiently implement incoming functions, to avoid spreading their components and, as a result, degrading their performance. This paper presents a novel active replication mechanism for configurable logic blocks (CLBs), able to implement on-line rearrangements, defragmenting the available FPGA resources without disturbing those functions that are currently running.
Resumo:
Existent computer programming training environments help users to learn programming by solving problems from scratch. Nevertheless, initiating the resolution of a program can be frustrating and demotivating if the student does not know where and how to start. Skeleton programming facilitates a top-down design approach, where a partially functional system with complete high level structures is available, so the student needs only to progressively complete or update the code to meet the requirements of the problem. This paper presents CodeSkelGen - a program skeleton generator. CodeSkelGen generates skeleton or buggy Java programs from a complete annotated program solution provided by the teacher. The annotations are formally described within an annotation type and processed by an annotation processor. This processor is responsible for a set of actions ranging from the creation of dummy methods to the exchange of operator types included in the source code. The generator tool will be included in a learning environment that aims to assist teachers in the creation of programming exercises and to help students in their resolution.
Resumo:
Reconfigurable computing experienced a considerable expansion in the last few years, due in part to the fast run-time partial reconfiguration features offered by recent SRAM-based Field Programmable Gate Arrays (FPGAs), which allowed the implementation in real-time of dynamic resource allocation strategies, with multiple independent functions from different applications sharing the same logic resources in the space and temporal domains. However, when the sequence of reconfigurations to be performed is not predictable, the efficient management of the logic space available becomes the greatest challenge posed to these systems. Resource allocation decisions have to be made concurrently with system operation, taking into account function priorities and optimizing the space currently available. As a consequence of the unpredictability of this allocation procedure, the logic space becomes fragmented, with many small areas of free resources failing to satisfy most requests and so remaining unused. A rearrangement of the currently running functions is therefore necessary, so as to obtain enough contiguous space to implement incoming functions, avoiding the spreading of their components and the resulting degradation of system performance. A novel active relocation procedure for Configurable Logic Blocks (CLBs) is herein presented, able to carry out online rearrangements, defragmenting the available FPGA resources without disturbing functions currently running.
Resumo:
Presented at SEMINAR "ACTION TEMPS RÉEL:INFRASTRUCTURES ET SERVICES SYSTÉMES". 10, Apr, 2015. Brussels, Belgium.
Resumo:
Presented at INForum - Simpósio de Informática (INFORUM 2015). 7 to 8, Sep, 2015. Portugal.
Resumo:
This paper discusses how object-oriented iuheritance can be re-interpreted if statecharts are used for modelling the dynamic behaviour of an object. The support of inheritance of statecharts allows the improvement of systems' development by easing the reutilization of parts of already developed euccessful systems, aad by promoting the iterative and continuous models' refinement advocated by the operatioaal approach. Statechart is the formalism used within UML to specify reactive state.based behaviours. This paper covers the use of statecharts within the modelling of embedded systems for industrial control applxications, where performance and memory usage are main concerns.
Resumo:
The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, with current methods for DNA analysis (Polymerase Chain Reaction with the SGM Plus™ multiplex kit), it is generally not possible to obtain a conventional autosomal DNA profile of the minor contributor if the ratio between the two contributors in a mixture is smaller than 1:10. This is a consequence of the fact that the major contributor's profile 'masks' that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP), linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed elsewhere in literature [1]. The present paper reports on the derivation of an approach for the probabilistic evaluation of DIP-STR profiling results obtained from unbalanced DNA mixtures. The procedure is based on object-oriented Bayesian networks (OOBNs) and uses the likelihood ratio as an expression of the probative value. OOBNs are retained in this paper because they allow one to provide a clear description of the genotypic configuration observed for the mixed stain as well as for the various potential contributors (e.g., victim and suspect). These models also allow one to depict the assumed relevance relationships and perform the necessary probabilistic computations.
Resumo:
Currently, individuals including designers, contractors, and owners learn about the project requirements by studying a combination of paper and electronic copies of the construction documents including the drawings, specifications (standard and supplemental), road and bridge standard drawings, design criteria, contracts, addenda, and change orders. This can be a tedious process since one needs to go back and forth between the various documents (paper or electronic) to obtain information about the entire project. Object-oriented computer-aided design (OO-CAD) is an innovative technology that can bring a change to this process by graphical portrayal of information. OO-CAD allows users to point and click on portions of an object-oriented drawing that are then linked to relevant databases of information (e.g., specifications, procurement status, and shop drawings). The vision of this study is to turn paper-based design standards and construction specifications into an object-oriented design and specification (OODAS) system or a visual electronic reference library (ERL). Individuals can use the system through a handheld wireless book-size laptop that includes all of the necessary software for operating in a 3D environment. All parties involved in transportation projects can access all of the standards and requirements simultaneously using a 3D graphical interface. By using this system, users will have all of the design elements and all of the specifications readily available without concerns of omissions. A prototype object-oriented model was created and demonstrated to potential users representing counties, cities, and the state. Findings suggest that a system like this could improve productivity to find information by as much as 75% and provide a greater sense of confidence that all relevant information had been identified. It was also apparent that this system would be used by more people in construction than in design. There was also concern related to the cost to develop and maintain the complete system. The future direction should focus on a project-based system that can help the contractors and DOT inspectors find information (e.g., road standards, specifications, instructional memorandums) more rapidly as it pertains to a specific project.