990 resultados para Ruminal methane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro study was conducted to investigate the effects of condensed tannins (CT) structural properties, i.e. average polymer size (or mean degree of polymerization); percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane production (CH4) and fermentation characteristics. CT were extracted from eight plants in order to obtain different CT types: black currant leaves, goat willow leaves, goat willow twigs, pine bark, red currant leaves, sainfoin plants, weeping willow catkins and white clover flowers. They were analysed for CT content and CT composition by thiolytic degradation, followed by HPLC analysis. Grass silage was used as a control substrate. Condensed tannins were added to the substrate at a concentration of 40 g/kg, with or without polyethylene glycol (+ or −PEG 6000 treatment) to inactivate tannins, and then incubated for 72 h in mixed buffered rumen fluid from three different lactating dairy cows per run. Total cumulative gas production (GP) was measured by an automated gas production system. During the incubation, 12 gas samples (10 μl) were collected from each bottle headspace at 0, 2, 4, 6, 8, 12, 24, 30, 36, 48, 56 and 72 h of incubation and analyzed for CH4. A modified Michaelis–Menten model was fitted to the CH4 concentration patterns and model estimates were used to calculate total cumulative CH4 production (GPCH4). Total cumulative gas production and GPCH4 curves were fitted using biphasic and monophasic modified Michaelis-Menten models, respectively. Addition of PEG increased GP, GPCH4, and CH4 concentration compared to the −PEG treatment. All CT types reduced GPCH4 and CH4 concentration. All CT increased the half time of GP and GPCH4. Moreover, all CT decreased the maximum rate of fermentation for GPCH4 and rate of substrate degradation. The correlation between CT structure and GPCH4 and fermentation characteristics showed that the proportion of prodelphinidins within CT had the largest effect on fermentation characteristics, followed by average 27 polymer size and percentage of cis-flavan-3-ols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH 4) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF 6), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH 4 and SF 6 levels were measured with gas chromatography. Differences in CH4 emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3g day?1) than the Crossbred (264.2 g day?1). Lactating cows produced more methane (353.8 g day?1) than dry cows (268.8 g day?1) and heifers (222.6 g day?1). Holstein, with greater milk production potential, produced less CH4 (p < 0.05) per unit of dry matter intake (19.1 g kg?1) than the Crossbred (22.0 g kg?1). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day?1, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day?1). Methane emission varied as function of animal category and management intensity of production system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using sorghum silage, the effect of roughage/concentrate ratios was evaluated on nutrient intake, digestibility, ruminal parameters and methane production by beef cattle. Three treatments (0, 30 and 60% of concentrate in DM of the diet) were distributed in three Latin squares, with nine animals and three periods. Dry matter intake increased as the grain concentration in diet increased; pH showed opposite behavior. Methane emissions were lower for animals fed the diet exclusively with sorghum silage as compared with those fed 30% of concentrate, but was similar to that of animals receiving 60% of concentrate. Losses of ingested gross energy as methane were reduced by 33% when grain concentration was increased in the diet. Concentrations of propionic and butyric acids were greater in diets with grain concentrate; acetic acid concentration was not affected. Concentrate in diet increases available energy for the metabolism, measured by lower losses of ingested gross energy as ruminal methane. © 2013 Sociedade Brasileira de Zootecnia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ruminal methanogens reduce carbon dioxide to methane (CH 4 ), thereby preventing hydrogen use by bacteria for VFA synthesis resulting in a 2 to 12% loss in feed gross energy. Methane is a greenhouse gas that contributes to global warming. The objectives of this work were to determine: (1) the extent to which ruminal cultures acquire resistance to a nitrofuranyl derivative of para-aminobenzoate (NFP) and an extract from the plant Yucca shidigera (Yucca); (2) the effect of distillers dried grains plus solubles (DDGS) on ruminal CH4 production; (3) the effect of brome hay-based diets, corn-based diets, and in vivo 2-bromoethansulfonate treatment on ruminal methane (CH4 ) production; and (4) the effect of the above treatments on the methanogen population. Ruminal cultures treated with NFP for 90 d maintained a diminished capacity to generate CH4 , but cultures became resistant to the inhibitory effects of Yucca treatment within 10 d. Both treatments decreased (P < 0.01) the relative abundance of total Archaea and the order Methanomicrobiales, but Yucca treatment increased (P < 0.01) the relative abundance of the order Methanobacteriales. The replacement of brome hay and corn with DDGS in lamb diets decreased (P < 0.01) and increased (P < 0.05), respectively, the amount of CH4 produced per unit of digested DM. The substitution of DDGS for brome hay increased (P < 0.01) the relative abundance of the order Methanomicrobiales. The replacement of brome hay with corn decreased (P < 0.05) the amount of CH4 produced per unit of digested DM, and also decreased (P < 0.05) the relative abundance of both Archaea and the order Methanomicrobiales. However, the abundance of the order Methanobacteriales increased (P < 0.05) as corn replaced brome hay. Intraruminal administration of 2-bromoethansulfonate decreased (P < 0.05) CH4 emissions, and decreased (P < 0.05) the relative abundance of Archaea and Methanobacteriales. In conclusion, NFP may be efficacious for chronically inhibiting ruminal methanogenesis, and the replacement of dietary forage with DDGS attenuates CH4 emissions from ruminant animals. Changes in domain- and order-specific ribosomal DNA indicators of methanogens are not consistently correlated with changes in CH4 production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to quantify methane (CH4) emission using the sulfur hexafluoride (SF6) tracer technique, by dairy cattle on pasture in Brazilian tropical field conditions. Measurements were performed in the rainy season, with Holstein and Holstein x Zebu crossbred, from lactating and dry cows and heifers grazing fertilized Tobiatã grass, and heifers grazing unfertilized Brachiaria grass. Methane and SF6 concentrations were determined by gas chromatograph. Methane emissions by lactating cows varied from 13.8 to 16.8 g/hour, by dry cows from 11.6 to 12.3 g/hour, by heifers grazing fertilized grass was 9.5 g/hour and by heifers grazing unfertilized grass varied from 7.6 to 8.3 g/hour or 66 to 72 kg/head/year. Methane emission per digestive dry matter intake (DMDI) varied from 42 to 69 g/kg DMDI for lactating cows, 46 to 56 g/kg for dry cows, 45 to 58 g/kg for heifers grazing fertilized grass and 58 to 62 g/kg for heifers in unfertilized grass pasture. The CH4 emission measured on dairy cattle feeding tropical grasses was higher than that observed for temperate climate conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review present a discussion abouth the tannins. The tannins are compounds that have the ability to bind other macromolecules, reducing their availability to animal metabolism. This characteristic can be benefic or deleterious, depending on the tannin concentration degree in the plant and its structure. Positive effects are mainly related with a better use of the dietary protein and an increased efficiency of microbial protein synthesis in the rumen. The use of tannins to reduce ruminal methane emission has been subject of current researches, firmly indicating a decrease of ruminal methanogenesis. However, many of these studies, carried out to evaluate the effects of tannins on forage fermentation and animal metabolism, are based on legume plants, so their results can not be surpassed to studies concerning tanniniferous grasses. By improving the characterization of the profile and reactivity of tannins in tanniniferous forages, such as some sorghum hybrids, as well as conducting experiments to demonstrate the effects of tannins on animal metabolism and performance, the real potential of forages with tannin will be enlightened.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of increasing doses [0 (control: CON), 20, 60, 180 and 540 mg/L incubation medium] of garlic oil (GO) and cinnamaldehyde (CIN) on in vitro ruminal fermentation of two diets. Batch cultures of mixed ruminal microorganisms were inoculated with ruminal fluid from four sheep fed a medium-concentrate diet (MC; 50 : 50 alfalfa hay : concentrate) or four sheep fed a high-concentrate diet (HC; 15 : 85 barley straw : concentrate). Diets MC and HC were representative of those fed to dairy and fattening ruminants, respectively. Samples of each diet were used as incubation substrates for the corresponding inoculum, and the incubation was repeated on 4 different days (four replicates per experimental treatment). There were GO × diet-type and CIN × diet-type interactions (P < 0.001–0.05) for many of the parameters determined, indicating different effects of both oils depending on the diet type. In general, effects of GO were more pronounced for MC compared with HC diet. Supplementation of GO did not affect (P > 0.05) total volatile fatty acid (VFA) production at any dose. For MC diet, GO at 60, 180 and 540 mg/L decreased (P < 0.05) molar proportion of acetate (608, 569 and 547 mmol/mol total VFA, respectively), and increased (P < 0.05) propionate proportion (233, 256 and 268 mmol/mol total VFA, respectively), compared with CON values (629 and 215 mmol/mol total VFA for acetate and propionate, respectively). A minimum dose of 180 mg of GO/L was required to produce similar modifications in acetate and propionate proportions with HC diet, but no effects (P > 0.05) on butyrate proportion were detected. Methane/VFA ratio was reduced (P < 0.05) by GO at 60, 180 and 540 mg/L for MC diet (0.23, 0.16 and 0.10 mol/mol, respectively), and by GO at 20, 60, 180 and 540 mg/L for HC diet (0.19, 0.19, 0.16 and 0.08 mol/mol, respectively), compared with CON (0.26 and 0.21 mol/mol for MC and HC diets, respectively). No effects (P = 0.16–0.85) of GO on final pH and concentrations of NH3-N and lactate were detected. For both diet types, the highest CIN dose decreased (P < 0.05) production of total VFA, gas and methane, which would indicate an inhibition of fermentation. Compared with CON, CIN at 180 mg/L increased (P < 0.05) acetate proportion for the MC (629 and 644 mmol/mol total VFA for CON and CIN, respectively) and HC (525 and 540 mmol/mol total VFA, respectively) diets, without affecting the proportions of any other VFA or total VFA production. Whereas for MC diet CIN at 60 and 180 mg/L decreased (P < 0.05) NH3-N concentrations compared with CON, only a trend (P < 0.10) was observed for CIN at 180 mg/L with the HC diet. Supplementation of CIN up to 180 mg/L did not affect (P = 0.18–0.99) lactate concentrations and production of gas and methane for any diet. The results show that effectiveness of GO and CIN to modify ruminal fermentation may depend on diet type, which would have practical implications if they are confirmed in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho foi realizado com o objetivo de avaliar os efeitos do uso de leucena e levedura em dietas para bovinos sobre o metabolismo ruminal, incluindo o pH e as produções de ácido graxos voláteis (AGV), amônia e gás metano. Quatro bovinos machos com 800 kg e fistulados no rúmen foram mantidos em quadrado latino 4 × 4, em arranjo fatorial 2 × 2, composto de dois níveis de leucena (20 e 50% MS) e feno de capim coast-cross na presença ou ausência de levedura. Não houve influência das dietas nos valores médios de pH (média 6,82) e nas concentrações de amônia no rúmen, que variaram de 18 a 21 mg/100 mL. Houve interação entre níveis de leucena e levedura na concentração total de AGV. As dietas não diferiram quanto à concentração de ácido acético, mas os animais alimentados com a dieta com 50% de leucena e contendo levedura apresentaram maiores concentrações médias de ácido propiônico (média 19,14 mM). A emissão de metano reduziu em12,3% em relação à mesma dieta sem levedura e em 17,2% quando os animais foram alimentados com 20% de leucena com levedura. Verificou-se efeito associativo de leucena, quando fornecida em alto nível na dieta (50% MS), e levedura na redução da emissão de metano e na melhoria no padrão de fermentação no rúmen, o que pode reduzir as perdas de energia e melhorar eficiência energética do animal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rumen fermentation and methane emission for eucalyptus (Eucalyptus citriodora) fresh leaves (FL) or residue leaves (RL), after essential oil extraction from eucalyptus leaves in comparison with alfalfa (Medicago sativa) hay, were investigated in vitro. Eucalyptus FL and RL were obtained from the Distillery Trees Barras Company, Torrinha City, Sao Paulo, Brazil. The semi-automatic system of gas production was used to measure gas production, methane emission and rumen fermentation after 24 h incubation in vitro. The results showed that the crude protein (CP) contents were 76.4, 78.1 and 181.9 g kg(-1) DM for eucalyptus FL, RL and alfalfa hay, respectively. The neutral-detergent fibre (NDF) and acid-detergent fibre (ADF) were significantly lower in eucalyptus FL and RL than alfalfa hay. The Eucalyptus fresh and residue leaves were rich in total phenols (TP) and total tannins (TT) but had negligible content of condensed tannins (CT). There was significant reduction in cumulative gas production about 54 and 51% with eucalyptus FL and RL, respectively, compared with alfalfa hay. The methane emission (mL/g DM) was reduced (P<0.05) by 53 and 57% with eucalyptus FL and RL, respectively, but the reduction was 21 and 16% when expressed on truly digested organic matter basis. There were a decline (P<0.05) in true dry and organic matter degradation in vitro in eucalyptus FL and RL compared with alfalfa hay substrate. The partitioning factor values were higher (P<0.05) in eucalyptus FL and RL than alfalfa hay. There was no significant difference observed between eucalyptus FL, RL and alfalfa hay in protozoa count. It is concluded that the eucalyptus leaves have potential effect to mitigate CH4 production in vitro, which may be attributed to a decrease in fermentable substrate rather than to a direct effect on methanogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were to characterise four essential oils (EO) chemically and to evaluate their effect on ruminal fermentation and methane emission in vitro. The investigated EO were isolated from Achillea santolina, Artemisia judaica, Schinus terebinthifolius and Mentha microphylla, and supplemented at four levels (0, 25, 50 and 75 l) to 75ml of buffered rumen fluid plus 0.5 g of substrate. The main components of the EO were piperitone (49.1%) and camphor (34.5%) in A. judaica, 16-dimethyl 15-cyclooactdaiene (60.5%) in A. santolina, piperitone oxide (46.7%) and cis-piperitone oxide (28%) in M. microphylla, and -muurolene (45.3%) and -thujene (16.0%) in S. terebinthifolius. The EO from A. santolina (at 25 and 50 l), and all levels of A. judaica increased the gas production significantly, but S. terebinthifolius (at 50 and 75 l), A. santolina (at 75 l) and all levels of M. microphylla decreased the gas production significantly in comparison with the control. The highest levels of A. santolina and A. judaica, and all doses from M. microphylla EO inhibited the methane production along with a significant reduction in true degradation of dry matter and organic matter, protozoa count and NH3-N concentration. It is concluded that the evaluated EO have the potential to affect ruminal fermentation efficiency and the EO from M. microphylla could be a promising methane mitigating agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our study investigated the effects of condensed tannins (CT) on rumen in vitro methane (CH4) production and fermentation characteristics by incubating lucerne in buffered rumen fluid in combination with different CT extracts at 0 (control), 40, 80 and 120 g CT/kg of substrate DM. Condensed tannins were extracted from four sainfoin accessions: Rees ‘A’, CPI63763, Cotswold Common and CPI63767. Gas production (GP) was measured using a fully automated GP apparatus with CH4 measured at distinct time points. Condensed tannins differed substantially in terms of polymer size and varied from 13 (Rees ‘A’) to 73 (CPI63767) mean degree of polymerization, but had relatively similar characteristics in terms of CT content, procyanidin: prodelphinidin (PC: PD) and cis:trans ratios. Compared to control, addition of CT from CPI63767 and CPI63763 at 80 and 120 g CT/kg of substrate DM reduced CH4 by 43% and 65%, and by 23% and 57%, respectively, after 24-h incubation. Similarly, CT from Rees ‘A’ and Cotswold Common reduced CH4 by 26% and 46%, and by 28% and 46% respectively. Addition of increasing level of CT linearly reduced the maximum rates of GP and CH4 production, and the estimated in vitro organic matter digestibility. There was a negative linear and quadratic (p < 0.01) relation between CT concentration and total volatile fatty acid (VFA) production. Inclusion of 80 and 120 g CT/kg of substrate DM reduced (p < 0.001) branched-chain VFA production and acetate: propionate ratio and was lowest for CPI63767. A decrease in proteolytic activity as indirectly shown by a change in VFA composition favouring a shift towards propionate and reduction in branched-chain VFA production varied with type of CT and was highest for CPI63767. In conclusion, these results suggest that tannin polymer size is an important factor affecting in vitro CH4 production which may be linked to the CT interaction with dietary substrate or microbial cells.