931 resultados para Rule-based techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in hardware and software technologies allow to capture streaming data. The area of Data Stream Mining (DSM) is concerned with the analysis of these vast amounts of data as it is generated in real-time. Data stream classification is one of the most important DSM techniques allowing to classify previously unseen data instances. Different to traditional classifiers for static data, data stream classifiers need to adapt to concept changes (concept drift) in the stream in real-time in order to reflect the most recent concept in the data as accurately as possible. A recent addition to the data stream classifier toolbox is eRules which induces and updates a set of expressive rules that can easily be interpreted by humans. However, like most rule-based data stream classifiers, eRules exhibits a poor computational performance when confronted with continuous attributes. In this work, we propose an approach to deal with continuous data effectively and accurately in rule-based classifiers by using the Gaussian distribution as heuristic for building rule terms on continuous attributes. We show on the example of eRules that incorporating our method for continuous attributes indeed speeds up the real-time rule induction process while maintaining a similar level of accuracy compared with the original eRules classifier. We termed this new version of eRules with our approach G-eRules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The starting point of this research was the belief that manufacturing and similar industries need help with the concept of e-business, especially in assessing the relevance of possible e-business initiatives. The research hypotheses was that it should be possible to produce a systematic model that defines, at a useful level of detail, the probable e-business requirements of an organisation based on objective criteria with an accuracy of 85%-90%. This thesis describes the development and validation of such a model. A preliminary model was developed from a variety of sources, including a survey of current and planned e-business activity and representative examples of e-business material produced by e-business solution providers. The model was subject to a process of testing and refinement based on recursive case studies, with controls over the improving accuracy and stability of the model. Useful conclusions were also possible as to the relevance of e-business functions to the case study participants themselves. Techniques were evolved to synthesise the e-business requirements of an organisation and present them at a management summary level of detail. The results of applying these techniques to all the case studies used in this research were discussed. The conclusion of the research was that the case study methodology employed was successful. A model was achieved suitable for practical application in a manufacturing organisation requiring help with a requirements definition process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El Niño South Oscillation (ENSO) is one climatic phenomenon related to the inter-annual variability of global meteorological patterns influencing sea surface temperature and rainfall variability. It influences human health indirectly through extreme temperature and moisture conditions that may accelerate the spread of some vector-borne viral diseases, like dengue fever (DF). This work examines the spatial distribution of association between ENSO and DF in the countries of the Americas during 1995-2004, which includes the 1997-1998 El Niño, one of the most important climatic events of 20(th) century. Data regarding the South Oscillation index (SOI), indicating El Niño-La Niña activity, were obtained from Australian Bureau of Meteorology. The annual DF incidence (AIy) by country was computed using Pan-American Health Association data. SOI and AIy values were standardised as deviations from the mean and plotted in bars-line graphics. The regression coefficient values between SOI and AIy (rSOI,AI) were calculated and spatially interpolated by an inverse distance weighted algorithm. The results indicate that among the five years registering high number of cases (1998, 2002, 2001, 2003 and 1997), four had El Niño activity. In the southern hemisphere, the annual spatial weighted mean centre of epidemics moved southward, from 6° 31' S in 1995 to 21° 12' S in 1999 and the rSOI,AI values were negative in Cuba, Belize, Guyana and Costa Rica, indicating a synchrony between higher DF incidence rates and a higher El Niño activity. The rSOI,AI map allows visualisation of a graded surface with higher values of ENSO-DF associations for Mexico, Central America, northern Caribbean islands and the extreme north-northwest of South America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a method based on association rule-mining to enhance the diagnosis of medical images (mammograms). It combines low-level features automatically extracted from images and high-level knowledge from specialists to search for patterns. Our method analyzes medical images and automatically generates suggestions of diagnoses employing mining of association rules. The suggestions of diagnosis are used to accelerate the image analysis performed by specialists as well as to provide them an alternative to work on. The proposed method uses two new algorithms, PreSAGe and HiCARe. The PreSAGe algorithm combines, in a single step, feature selection and discretization, and reduces the mining complexity. Experiments performed on PreSAGe show that this algorithm is highly suitable to perform feature selection and discretization in medical images. HiCARe is a new associative classifier. The HiCARe algorithm has an important property that makes it unique: it assigns multiple keywords per image to suggest a diagnosis with high values of accuracy. Our method was applied to real datasets, and the results show high sensitivity (up to 95%) and accuracy (up to 92%), allowing us to claim that the use of association rules is a powerful means to assist in the diagnosing task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relation between patient and physician in most modern Health Care Sys- tems is sparse, limited in time and very in exible. On the other hand, and in contradiction with several recent studies, most physicians do not rely their patient diagnostics evaluations on intertwined psychological and social nature factors. Facing these problems and trying to improve the patient/physician relation we present a mobile health care solution to im- prove the interaction between the physician and his patients. The solution serves not only as a privileged mean of communication between physicians and patients but also as an evolutionary intelligent platform delivering a mobile rule based system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a linguistically rule-based grapheme-to-phone (G2P) transcription algorithm is described for European Portuguese. A complete set of phonological and phonetic transcription rules regarding the European Portuguese standard variety is presented. This algorithm was implemented and tested by using online newspaper articles. The obtained experimental results gave rise to 98.80% of accuracy rate. Future developments in order to increase this value are foreseen. Our purpose with this work is to develop a module/ tool that can improve synthetic speech naturalness in European Portuguese. Other applications of this system can be expected like language teaching/learning. These results, together with our perspectives of future improvements, have proved the dramatic importance of linguistic knowledge on the development of Text-to-Speech systems (TTS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most important problems in optical pattern recognition by correlation is the appearance of sidelobes in the correlation plane, which causes false alarms. We present a method that eliminate sidelobes of up to a given height if certain conditions are satisfied. The method can be applied to any generalized synthetic discriminant function filter and is capable of rejecting lateral peaks that are even higher than the central correlation. Satisfactory results were obtained in both computer simulations and optical implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes the developmentof an Open Source shallow-transfer machine translation system from Czech to Polish in theApertium platform. It gives details ofthe methods and resources used in contructingthe system. Although the resulting system has quite a high error rate, it is still competitive with other systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes to enrich RBMTdictionaries with Named Entities(NEs) automatically acquired fromWikipedia. The method is appliedto the Apertium English-Spanishsystem and its performance comparedto that of Apertium with and withouthandtagged NEs. The system withautomatic NEs outperforms the onewithout NEs, while results vary whencompared to a system with handtaggedNEs (results are comparable forSpanish to English but slightly worstfor English to Spanish). Apart fromthat, adding automatic NEs contributesto decreasing the amount of unknownterms by more than 10%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a series of experiments in which we start with English to French and English to Japanese versions of an Open Source rule-based speech translation system for a medical domain, and bootstrap correspondign statistical systems. Comparative evaluation reveals that the rule-based systems are still significantly better than the statistical ones, despite the fact that considerable effort has been invested in tuning both the recognition and translation components; also, a hybrid system only marginally improved recall at the cost of a los in precision. The result suggests that rule-based architectures may still be preferable to statistical ones for safety-critical speech translation tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluates the performance of four methods for estimating regression coefficients used to make statistical decisions regarding intervention effectiveness in single-case designs. Ordinary least squares estimation is compared to two correction techniques dealing with general trend and one eliminating autocorrelation whenever it is present. Type I error rates and statistical power are studied for experimental conditions defined by the presence or absence of treatment effect (change in level or in slope), general trend, and serial dependence. The results show that empirical Type I error rates do not approximate the nominal ones in presence of autocorrelation or general trend when ordinary and generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but prove to be insufficiently sensitive to existing treatment effects. Consequently, the use of the statistical significance of the regression coefficients for detecting treatment effects is not recommended for short data series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development of a two-way shallow-transfer rule-based machine translation system between Bulgarian and Macedonian. It gives an account of the resources and the methods used for constructing the system, including the development of monolingual and bilingual dictionaries, syntactic transfer rules and constraint grammars. An evaluation of thesystem's performance was carried out and compared to another commercially available MT system for the two languages. Some future work was suggested.