1000 resultados para Rotors - Dynamics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work the main concepts to apply to dynamic signal analysis technique for rotating machines known as order analysis, discussing their characteristics and applying it on an experimental test rig. It aims to characterize the dynamic behavior of experimental test rig in run up and run down tests, it's operational speed range and the identification of the critical speed of shaft rotation. The results of the critical speed and stationary natural frequency of the shaft are discussed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work the main concepts to apply to dynamic signal analysis technique for rotating machines known as order analysis, discussing their characteristics and applying it on an experimental test rig. It aims to characterize the dynamic behavior of experimental test rig in run up and run down tests, it's operational speed range and the identification of the critical speed of shaft rotation. The results of the critical speed and stationary natural frequency of the shaft are discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a methodology for calculating the gains of an output feedback controller for active vibration control of flexible rotors. The methodology is based on modal reduction. The proportional and derivative gains are obtained by adjusting the first two damping factors of the system and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are presented, showing significative improvement in damping reserve with the control. The importance of sensor location is emphasized, on the basis of the energy necessary to operate the active system over the entire frequency range studied. The best results are obtained by a decentralized controller, observing displacement and velocity of the shaft at the bearing positions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The active magnetic bearings have recently been intensively developed because of noncontact support having several advantages compared to conventional bearings. Due to improved materials, strategies of control, and electrical components, the performance and reliability of the active magnetic bearings are improving. However, additional bearings, retainer bearings, still have a vital role in the applications of the active magnetic bearings. The most crucial moment when the retainer bearings are needed is when the rotor drops from the active magnetic bearings on the retainer bearings due to component or power failure. Without appropriate knowledge of the retainer bearings, there is a chance that an active magnetic bearing supported rotor system will be fatal in a drop-down situation. This study introduces a detailed simulation model of a rotor system in order to describe a rotor drop-down situation on the retainer bearings. The introduced simulation model couples a finite element model with component mode synthesis and detailed bearing models. In this study, electrical components and electromechanical forces are not in the focus. The research looks at the theoretical background of the finite element method with component mode synthesis that can be used in the dynamic analysis of flexible rotors. The retainer bearings are described by using two ball bearing models, which include damping and stiffness properties, oil film, inertia of rolling elements and friction between races and rolling elements. Thefirst bearing model assumes that the cage of the bearing is ideal and that the cage holds the balls in their predefined positions precisely. The second bearing model is an extension of the first model and describes the behavior of the cageless bearing. In the bearing model, each ball is described by using two degrees of freedom. The models introduced in this study are verified with a corresponding actual structure. By using verified bearing models, the effects of the parameters of the rotor system onits dynamics during emergency stops are examined. As shown in this study, the misalignment of the retainer bearings has a significant influence on the behavior of the rotor system in a drop-down situation. In this study, a stability map of the rotor system as a function of rotational speed of the rotor and the misalignment of the retainer bearings is presented. In addition, the effects of parameters of the simulation procedure and the rotor system on the dynamics of system are studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The non-idealities in a rotor-bearing system may cause undesirable subcritical superharmonic resonances that occur when the rotating speed of the rotor is a fraction of the natural frequency of the system. These resonances arise partly from the non-idealities of the bearings. This study introduces a novel simulation approach that can be used to study the superharmonic vibrations of rotor-bearing systems. The superharmonic vibrations of complex rotor-bearing systems can be studied in an accurate manner by combining a detailed rotor and bearing model in a multibody simulation approach. The research looks at the theoretical background of multibody formulations that can be used in the dynamic analysis of flexible rotors. The multibody formulations currently in use are suitable for linear deformation analysis only. However, nonlinear formulation may arise in high-speed rotor dynamics applications due to the cenrrifugal stiffening effect. For this reason, finite element formulations that can describe nonlinear deformation are also introduced in this work. The description of the elastic forces in the absolute nodal coordinate formulation is studied and improved. A ball bearing model that includes localized and distributed defects is developed in this study. This bearing model could be used in rotor dynamics or multibody code as an interface elements between the rotor and the supporting structure. The model includes descriptions of the nonlinear Hertzian contact deformation and the elastohydrodynamic fluid film. The simulation approaches and models developed here are applied in the analysis of two example rotor-bearing systems. The first example is an electric motor supported by two ball bearings and the second is a roller test rig that consists of the tube roll of a paper machine supported by a hard-bearing-type balanceing machine. The simulation results are compared to the results available in literature as well as to those obtained by measuring the existing structure. In both practical examples, the comparison shows that the simulation model is capable of predicting the realistic responses of a rotor system. The simulation approaches developed in this work can be used in the analysis of the superharmonic vibrations of general rotor-bearing systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear dynamic response and a nonlinear control method of a particular portal frame foundation for an unbalanced rotating machine with limited power (non-ideal motor) are examined. Numerical simulations are performed for a set of control parameters (depending on the voltage of the motor) related to the static and dynamic characteristics of the motor. The interaction of the structure with the excitation source may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. A mathematical model having two degrees of freedom simplifies the non-ideal system. The study of controlling steady-state vibrations of the non-ideal system is based on the saturation phenomenon due to internal resonance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the analytic study of dynamics of Multi--Rotor Unmanned Aerial Vehicles. It is conceived to give a set of mathematical instruments apt to the theoretical study and design of these flying machines. The entire work is organized in analogy with classical academic texts about airplane flight dynamics. First, the non--linear equations of motion are defined and all the external actions are modeled, with particular attention to rotors aerodynamics. All the equations are provided in a form, and with personal expedients, to be directly exploitable in a simulation environment. This has requited an answer to questions like the trim of such mathematical systems. All the treatment is developed aiming at the description of different multi--rotor configurations. Then, the linearized equations of motion are derived. The computation of the stability and control derivatives of the linear model is carried out. The study of static and dynamic stability characteristics is, thus, addressed, showing the influence of the various geometric and aerodynamic parameters of the machine and in particular of the rotors. All the theoretic results are finally utilized in two interesting cases. One concerns the design of control systems for attitude stabilization. The linear model permits the tuning of linear controllers gains and the non--linear model allows the numerical testing. The other case is the study of the performances of an innovative configuration of quad--rotor aircraft. With the non--linear model the feasibility of maneuvers impossible for a traditional quad--rotor is assessed. The linear model is applied to the controllability analysis of such an aircraft in case of actuator block.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Es bien conocido que las pequeñas imperfecciones existentes en los álabes de un rótor de turbomaquinaria (conocidas como “mistuning”) pueden causar un aumento considerable de la amplitud de vibración de la respuesta forzada y, por el contrario, tienen típicamente un efecto beneficioso en el flameo del rótor. Para entender estos efectos se pueden llevar a cabo estudios numéricos del problema aeroelástico completo. Sin embargo, el cálculo de “mistuning” usando modelos de alta resolución es una tarea difícil de realizar, ya que los modelos necesarios para describir de manera precisa el componente de turbomáquina (por ejemplo rotor) tienen, necesariamente, un número muy elevado de grados de libertad, y, además, es necesario hacer un estudio estadístico para poder explorar apropiadamente las distribuciones posibles de “mistuning”, que tienen una naturaleza aleatoria. Diferentes modelos de orden reducido han sido desarrollados en los últimos años para superar este inconveniente. Uno de estos modelos, llamado “Asymptotic Mistuning Model (AMM)”, se deriva de la formulación completa usando técnicas de perturbaciones que se basan en que el “mistuning” es pequeño. El AMM retiene sólo los modos relevantes para describir el efecto del mistuning, y permite identificar los mecanismos clave involucrados en la amplificación de la respuesta forzada y en la estabilización del flameo. En este trabajo, el AMM se usa para estudiar el efecto del “mistuning” de la estructura y de la amortiguación sobre la amplitud de la respuesta forzada. Los resultados obtenidos son validados usando modelos simplificados del rotor y también otros de alta definición. Además, en el marco del proyecto europeo FP7 "Flutter-Free Turbomachinery Blades (FUTURE)", el AMM se aplica para diseñar distribuciones de “mistuning” intencional: (i) una que anula y (ii) otra que reduce a la mitad la amplitud del flameo de un rotor inestable; y las distribuciones obtenidas se validan experimentalmente. Por último, la capacidad de AMM para predecir el comportamiento de flameo de rotores con “mistuning” se comprueba usando resultados de CFD detallados. Abstract It is well known that the small imperfections of the individual blades in a turbomachinery rotor (known as “mistuning”) can cause a substantial increase of the forced response vibration amplitude, and it also typically results in an improvement of the flutter vibration characteristics of the rotor. The understanding of these phenomena can be attempted just by performing numerical simulations of the complete aeroelastic problem. However, the computation of mistuning cases using high fidelity models is a formidable task, because a detailed model of the whole rotor has to be considered, and a statistical study has to be carried out in order to properly explore the effect of the random mistuning distributions. Many reduced order models have been developed in recent years to overcome this barrier. One of these models, called the Asymptotic Mistuning Model (AMM), is systematically derived from the complete bladed disk formulation using a consistent perturbative procedure that exploits the smallness of mistuning to simplify the problem. The AMM retains only the essential system modes that are involved in the mistuning effect, and it allows to identify the key mechanisms of the amplification of the forced response amplitude and the flutter stabilization. In this work, AMM methodolgy is used to study the effect of structural and damping mistuning on the forced response vibration amplitude. The obtained results are verified using a one degree of freedom model of a rotor, and also high fidelity models of the complete rotor. The AMM is also applied, in the frame of the European FP7 project “Flutter-Free Turbomachinery Blades (FUTURE)”, to design two intentional mistuning patterns: (i) one to complete stabilize an unstable rotor, and (ii) other to approximately reduce by half its flutter amplitude. The designed patterns are validated experimentally. Finally, the ability of AMM to predict the flutter behavior of mistuned rotors is checked against numerical, high fidelity CFD results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of the current dissertation is to study qualitatively the underlying physics of vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible viscous flow through the use of the KLE method. We carried out a long series of numerical experiments in the cases of flow around the cylinder at low Reynolds numbers. The study of flow at low Reynolds numbers provides an insight in the fluid physics and also plays a critical role when applying to stalled turbine rotors. Many of the conclusions about the qualitative nature of the physical mechanisms characterizing vortex formation, shedding and further interaction analyzed here at low Re could be extended to other Re regimes and help to understand the separation of the boundary layers in airfoils and other aerodynamic surfaces. In the long run, it aims to provide a better understanding of the complex multi-physics problems involving fluid-structure-control interaction through improved mathematical computational models of the multi-physics process. Besides the scientific conclusions produced, the research work on streamlined and bluff-body condition will also serve as a valuable guide for the future design of blade aerodynamics and the placement of wind turbines and hydrakinetic turbines, increasing the efficiency in the use of expensive workforce, supplies, and infrastructure. After the introductory section describing the main fields of application of wind power and hydrokinetic turbines, we describe the main features and theoretical background of the numerical method used here. Then, we present the analysis of the numerical experimentation results for the oscillatory regime right before the onset of vortex shedding for circular cylinders. We verified the wake length of the closed near-wake behind the cylinder and analysed the decay of the wake at the wake formation region, and then studied the St-Re relationship at the Reynolds numbers before the wake sheds compared to the experimental data. We found a theoretical model that describes the time evolution of the amplitude of fluctuations in the vorticity field on the twin vortex wake, which accurately matches the numerical results in terms of the frequency of the oscillation and rate of decay. We also proposed a model based on an analog circuit that is able to interpret the concerning flow by reducing the number of degrees of freedom. It follows the idea of the non-linear oscillator and resembles the dynamics mechanism of the closed near-wake with a common configured sine wave oscillator. This low-dimensional circuital model may also help to understand the underlying physical mechanisms, related to vorticity transport, that give origin to those oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As graphene has become one of the most important materials, there is renewed interest in other similar structures. One example is silicene, the silicon analogue of graphene. It shares some of the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the practices involved in the production of knowledge about menopause at Caism, Unicamp, a reference center for public policies for women's health. Gynecological appointments and psychological support meetings were observed, and women and doctors were interviewed in order to identify what discourse circulates there and how different actors are brought in to ensure that the knowledge produced attains credibility and travels beyond the boundaries of the teaching hospital to become universal. The analysis is based on localized studies aligned with social studies of science and technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the practices involved in the production of knowledge about menopause at Caism, Unicamp, a reference center for public policies for women's health. Gynecological appointments and psychological support meetings were observed, and women and doctors were interviewed in order to identify what discourse circulates there and how different actors are brought in to ensure that the knowledge produced attains credibility and travels beyond the boundaries of the teaching hospital to become universal. The analysis is based on localized studies aligned with social studies of science and technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytoplankton may function as a "sensor" of changes in aquatic environment and responds rapidly to such changes. In freshwaters, coexistence of species that have similar ecological requirements and show the same environmental requirements frequently occurs; such species groups are named functional groups. The use of phytoplankton functional groups to evaluate these changes has proven to be very useful and effective. Thus, the aim of this study was to evaluate the occurrence of functional groups of phytoplankton in two reservoirs (Billings and Guarapiranga) that supply water to millions of people in São Paulo city Metropolitan Area, southeastern Brazil. Surface water samples were collected monthly and physical, chemical and biological (quantitative and qualitative analyses of the phytoplankton) were performed. The highest biovolume (mm³.L-1) of the descriptor species and functional groups were represented respectively by Anabaena circinalis Rabenh. (H1), Microcystis aeruginosa (Kützing) Kützing (L M/M) and Mougeotia sp. (T) in the Guarapiranga reservoir and Cylindrospermopsis raciborskii (Wolosz.) Seen. and Subba Raju (S N), Microcystis aeruginosa and M. panniformis Komárek et al. (L M/M), Planktothrix agardhii (Gom.) Anagn. and Komárek and P. cf. clathrata (Skuja) Anagn. and Komárek (S1) in the Billings reservoir. The environmental factors that most influenced the phytoplankton dynamics were water temperature, euphotic zone, turbidity, conductivity, pH, dissolved oxygen, nitrate and total phosphorous.